Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Discov Nano ; 19(1): 34, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38386138

ABSTRACT

In this article, we present a straightforward in-situ approach for producing Ag NPs incorporated in graphene oxide (GO) blended with glutaraldehyde (GA) cross-linked polyvinyl alcohol (PVA) matrix. Samples are γ-irradiated by doses of 2, 5, and 10 kGy and in comparison with the pristine films, the thermal conductivity ('k') and effusivity are measured. 'k' decreases with irradiation doses up to 5 kGy and further increase in the dosage results increase in 'k'. We performed FDTD modeling to verify the effect of polarization and periodicity on the absorptivity and emissivity spectra that are correlated to the 'k' and effusivity, empirically. Hence, we can confess that the structural properties of the prepared hybrid nanocomposite are manipulated by γ-irradiation. This attests that the PVA/GO-Ag/GA nanocomposite is radiation-sensitive and could be employed for thermal management systems. Moreover, their strong electrical insulation, as the measured dc conductivity of the γ-irradiated samples is found to be in the range of 2.66 × 10-8-4.319 × 10-7 Sm-1, which is below the percolation threshold of 1.0 × 10-6 Sm-1, demonstrates that they are excellent candidates for the use of thermal management materials. The low 'k' values allow us to use this promising material as thermal insulating substrates in microsensors and microsystems. They are also great choices for usage as wire and cable insulation in nuclear reactors due to their superior electrical insulation.

2.
Nanomaterials (Basel) ; 13(12)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37368288

ABSTRACT

Only a few iron precursors that can be used in the atomic layer deposition (ALD) of iron oxides have been examined thus far. This study aimed to compare the various properties of FeOx thin films deposited using thermal ALD and plasma-enhanced ALD (PEALD) and to evaluate the advantages and disadvantages of using bis(N,N'-di-butylacetamidinato)iron(II) as an Fe precursor in FeOx ALD. The PEALD of FeOx films using iron bisamidinate has not yet been reported. Compared with thermal ALD films, PEALD films exhibited improved properties in terms of surface roughness, film density, and crystallinity after they were annealed in air at 500 °C. The annealed films, which had thicknesses exceeding ~ 9 nm, exhibited hematite crystal structures. Additionally, the conformality of the ALD-grown films was examined using trench-structured wafers with different aspect ratios.

3.
Nat Commun ; 14(1): 3365, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37291127

ABSTRACT

Spin Seebeck effect (SSE) refers to the generation of an electric voltage transverse to a temperature gradient via a magnon current. SSE offers the potential for efficient thermoelectric devices because the transverse geometry of SSE enables to utilize waste heat from a large-area source by greatly simplifying the device structure. However, SSE suffers from a low thermoelectric conversion efficiency that must be improved for widespread application. Here we show that the SSE substantially enhances by oxidizing a ferromagnet in normal metal/ferromagnet/oxide structures. In W/CoFeB/AlOx structures, voltage-induced interfacial oxidation of CoFeB modifies the SSE, resulting in the enhancement of thermoelectric signal by an order of magnitude. We describe a mechanism for the enhancement that results from a reduced exchange interaction of the oxidized region of ferromagnet, which in turn increases a temperature difference between magnons in the ferromagnet and electrons in the normal metal and/or a gradient of magnon chemical potential in the ferromagnet. Our result will invigorate research for thermoelectric conversion by suggesting a promising way of improving the SSE efficiency.


Subject(s)
Electricity , Electrons , Animals , Estrus , Hot Temperature , Oxides , Oxygen
4.
Nanomaterials (Basel) ; 13(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36678052

ABSTRACT

TiO2 is the most commonly used photocatalyst in water treatment. The particle size of TiO2 is an important factor that significantly influences its activity during photocatalytic degradation. In the presence of liquid, the properties of nanopowders composed of exactly the same product clearly differ according to their aggregation size. In this study, TiO2 nanoparticles with a controlled size were fabricated by focused ultrasound dispersion. The high energy generated by this system was used to control the size of TiO2 particles in the suspension. The constant high energy released by cavitation enabled the dispersion of the particles without a surfactant. The activities of the prepared TiO2 photocatalysts for methylene blue (MB) degradation were then compared. The dye degradation effect of the photocatalyst was as high as 61.7% after 10 min when the size of the powder was controlled in the solution, but it was only as high as 41.0% when the aggregation size was not controlled. Furthermore, when the TiO2 concentration exceeded a certain level, the photocatalytic activity of TiO2 decreased. Controlling the size of the aggregated photocatalyst particles is, therefore, essential in water-treatment technologies utilizing TiO2 photocatalytic properties, and adjusting the TiO2 concentration is an important economic factor in this photocatalytic technology. This study contributes to the development of processes for degrading dyes, such as MB, released from wastewater into aquatic environments.

5.
ACS Omega ; 7(39): 35023-35034, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36211055

ABSTRACT

In the present work, gold (Au), silver (Ag), and copper (Cu) based mono- and bimetallic NPs are prepared using a cost-effective facile wet chemical route. The pH for the synthesis is optimized in accordance with the optical spectra and supported by the finite difference time domain simulation studies. FESEM and TEM micrographs are used to analyze the morphology of the prepared nanoparticles. TEM images of bimetallic nanoparticles (BMPs) verified their bimetallic nature. XRD studies confirmed the formation of fcc-structured mono- and bimetallic NPs. Photoluminescence studies of the as-synthesized NPs are in good agreement with the previous publications. These synthesized NPs showed enhanced catalytic activity for the reduction/degradation of 4-nitrophenol, rhodamine B, and indigo carmine dyes in the presence of sodium borohydride (NaBH4) compared to NaBH4 alone. For the reduction of 4-nitrophenol, Au, Cu, and CuAg nanoparticles exhibited good catalytic efficiency compared to others, whereas for the degradation of rhodamine B and indigo carmine dyes the catalytic efficiency is comparatively high for CuAg BMPs. Furthermore, the antibacterial assay is carried out, and Ag NPs display effective antibacterial activity against Klebsiella pneumoniae, Salmonella ser. Typhimurium, Acinetobacter baumannii, Shigella flexneri, and Pseudomonas aeruginosa.

6.
Article in English | MEDLINE | ID: mdl-35666846

ABSTRACT

A flexible piezoelectric composite is composed of a polymer matrix and piezoelectric ceramic fillers to achieve good mechanical flexibility and processability. The overall piezoelectric performance of a composite is largely determined by the piezoelectric filler inside. Thus, different dispersion methods and additives that can promote the dispersion of piezoelectric ceramics and optimal composite structures have been actively investigated. However, relatively few attempts have been made to develop a filler that can effectively contribute to the performance enhancement of piezoelectric devices. In the present work, we introduce the fabrication and performance of the composite piezoelectric devices composed of Li-doped ZnO nanowires (Li: ZnO NWs) grown on the surface of MXene (Ti3C2) via the hydrothermal process. Through this approach, a semiconductor-metal hybrid structure is formed, increasing the overall permittivity. Moreover, the Ti3C2 layer can serve as a local ground in the composite so that the ferroelectric phase-transformed Li: ZnO NWs grown on its surface can be more effectively polarized during the poling process. In addition, the NW-covered surface of Ti3C2 prevents the aggregation of metallic Ti3C2 particles, promoting a more uniform electric field distribution during the poling process. As a result, the output performance of the piezoelectric nanogenerator (PENG) fabricated with a Li: ZnO NW/Ti3C2 composite was greatly improved compared to that of the devices fabricated with Li: ZnO NWs without the Ti3C2 platform. Specifically, the Li: ZnO NW/Ti3C2 composite piezoelectric nanogenerator (PENG) demonstrated a twofold higher output power density (∼9 µW/cm2) compared with the values obtained from the PENG devices based on Li: ZnO NWs. The approach introduced in this work can be easily adopted for an effective ferroelectric filler design to improve the output performance of the piezoelectric composite.

7.
J Colloid Interface Sci ; 616: 749-758, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35247813

ABSTRACT

Hematite-based photoanode (α-Fe2O3) is considered the promising candidate for photoelectrochemical (PEC) water splitting due to its relatively small optical bandgap. However, severe charge recombination in the bulk and poor surface water oxidation kinetics have limited the PEC performance of Fe2O3 photoelectrodes, which is far below the theoretical value. Herein, a new catalyst, S-doped FeOOH (S-FeOOH), has been immobilized onto the surface of the Fe2O3 nanorod (NR) array by a facile chemical bath deposition incorporated thermal sulfuration process. The grown S-FeOOH layer acts not only as an efficient catalyst layer to accelerate the water oxidation on the surface of photoelectrode but also constructs a heterojunction with the light absorption layer to facilitate the interface charge carrier separation and transfer. As expected, the modified S-FeOOH@Fe2O3 photoanode achieves a remarkable increase in PEC performance of 2.30 mA cm-2 at 1.23 V versus the reversible hydrogen electrode (VRHE) andan apparent negative shifted onset potential of 250 mV in comparison with pristine Fe2O3 (0.95 mA cm-2 at 1.23 VRHE). These results provide a simple and effective strategy to coupling oxygen evolution catalysts with photoanodes for practically high-performance PEC applications.

8.
Nat Commun ; 12(1): 7111, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34876578

ABSTRACT

Spin-orbit coupling effect in structures with broken inversion symmetry, known as the Rashba effect, facilitates spin-orbit torques (SOTs) in heavy metal/ferromagnet/oxide structures, along with the spin Hall effect. Electric-field control of the Rashba effect is established for semiconductor interfaces, but it is challenging in structures involving metals owing to the screening effect. Here, we report that the Rashba effect in Pt/Co/AlOx structures is laterally modulated by electric voltages, generating out-of-plane SOTs. This enables field-free switching of the perpendicular magnetization and electrical control of the switching polarity. Changing the gate oxide reverses the sign of out-of-plane SOT while maintaining the same sign of voltage-controlled magnetic anisotropy, which confirms the Rashba effect at the Co/oxide interface is a key ingredient of the electric-field modulation. The electrical control of SOT switching polarity in a reversible and non-volatile manner can be utilized for programmable logic operations in spintronic logic-in-memory devices.

9.
Nano Lett ; 20(11): 7803-7810, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33054243

ABSTRACT

Coupling of spin and heat currents enables the spin Nernst effect, the thermal generation of spin currents in nonmagnets that have strong spin-orbit interaction. Analogous to the spin Hall effect that electrically generates spin currents and associated electrical spin-orbit torques (SOTs), the spin Nernst effect can exert thermal SOTs on an adjacent magnetic layer and control the magnetization direction. Here, the thermal SOT caused by the spin Nernst effect is experimentally demonstrated in W/CoFeB/MgO structures. It is found that an in-plane temperature gradient across the sample generates a magnetic torque and modulates the switching field of the perpendicularly magnetized CoFeB. The W thickness dependence suggests that the torque originates mainly from thermal spin currents induced in W. Moreover, the thermal SOT reduces the critical current for SOT-induced magnetization switching, demonstrating that it can be utilized to control the magnetization in spintronic devices.

10.
Sci Rep ; 10(1): 6355, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32286462

ABSTRACT

Understanding of ultrafast spin dynamics is crucial for future spintronic applications. In particular, the role of non-thermal electrons needs further investigation in order to gain a fundamental understanding of photoinduced demagnetization and remagnetization on a femtosecond time scale. We experimentally demonstrate that non-thermal electrons existing in the very early phase of the photoinduced demagnetization process play a key role in governing the overall ultrafast spin dynamics behavior. We simultaneously measured the time-resolved reflectivity (TR-R) and the magneto-optical Kerr effect (TR-MOKE) for a Co/Pt multilayer film. By using an extended three-temperature model (E3TM), the quantitative analysis, including non-thermal electron energy transfer into the subsystem (thermal electron, lattice, and spin), reveals that energy flow from non-thermal electrons plays a decisive role in determining the type I and II photoinduced spin dynamics behavior. Our finding proposes a new mechanism for understanding ultrafast remagnetization dynamics.

11.
Nanomicro Lett ; 12(1): 172, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-34138153

ABSTRACT

A controllable approach that combines surface plasmon resonance and two-dimensional (2D) graphene/MoS2 heterojunction has not been implemented despite its potential for efficient photoelectrochemical (PEC) water splitting. In this study, plasmonic Ag-decorated 2D MoS2 nanosheets were vertically grown on graphene substrates in a practical large-scale manner through metalorganic chemical vapor deposition of MoS2 and thermal evaporation of Ag. The plasmonic Ag-decorated MoS2 nanosheets on graphene yielded up to 10 times higher photo-to-dark current ratio than MoS2 nanosheets on indium tin oxide. The significantly enhanced PEC activity could be attributed to the synergetic effects of SPR and favorable graphene/2D MoS2 heterojunction. Plasmonic Ag nanoparticles not only increased visible-light and near-infrared absorption of 2D MoS2, but also induced highly amplified local electric field intensity in 2D MoS2. In addition, the vertically aligned 2D MoS2 on graphene acted as a desirable heterostructure for efficient separation and transportation of photo-generated carriers. This study provides a promising path for exploiting the full potential of 2D MoS2 for practical large-scale and efficient PEC water-splitting applications.

12.
Sensors (Basel) ; 19(18)2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31514350

ABSTRACT

Nanocomposite structures, where the Fe, Fe2O3, or Ni2O3 nanoparticles with thin carbon layers are distributed among a single-wall carbon nanotube (SWCNT) network, are architectured using the co-arc discharge method. A synergistic effect between the nanoparticles and SWCNT is achieved with the composite structures, leading to the enhanced sensing response in ammonia detection. Thorough studies about the correlation between the electric properties and sensing performance confirm the independent operation of the receptor and transducer in the sensor structure by nanoparticles and SWCNT, respectively. Nanoparticles with a large specific surface area provide adsorption sites for the NH3 gas molecules, whereas hole carriers are supplied by the SWCNT to complete the chemisorption process. A new chemo-resistive sensor concept and its operating mechanism is proposed in our work. Furthermore, the separated receptor and transducer sensor scheme allows us more freedom in the design of sensor materials and structures, thereby enabling the design of high-performance gas sensors.

13.
J Phys Chem Lett ; 10(15): 4222-4228, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31291726

ABSTRACT

Organolead halide perovskite nanocrystals (NCs) have emerged as promising materials for various optoelectronic applications. However, their practical applications have been limited due to low structural integrity and poor luminescence stability associated with fast attachment-detachment dynamics of surface capping molecules during postprocessing. At present, a framework for understanding how the functional additives interact with surface moieties of organolead halide perovskites is not available. Methylammonium lead bromide NCs without surfactants on their surface provide an ideal system to investigate the direct interactions of the perovskite with functional molecules. When the oleic acid is used in a combination with n-octylamine, its contribution to surface passivation is significantly increased by protonating the alkyl amine to the corresponding ammonium ion. Our results demonstrate that the Br vacancies at the nonpassivated surface result in a reduction of Pb2+ to Pb0 by trapping electrons generated from the exciton dissociation, which provides a main pathway for exciton trapping.

14.
Sci Rep ; 8(1): 11337, 2018 Jul 27.
Article in English | MEDLINE | ID: mdl-30054593

ABSTRACT

We investigated the temperature distribution induced by laser irradiation of ultrathin magnetic films by applying a finite element method (FEM) to the finite difference time domain (FDTD) representation for the analysis of thermal induced spin currents. The dependency of the thermal gradient (∇T) of ultrathin magnetic films on material parameters, including the reflectivity and absorption coefficient were evaluated by examining optical effects, which indicates that reflectance (R) and the apparent absorption coefficient (α*) play important roles in the calculation of ∇T for ultrathin layers. The experimental and calculated values of R and α* for the ultrathin magnetic layers irradiated by laser-driven heat sources estimated using the combined FDTD and FEM method are in good agreement for the amorphous CoFeB and crystalline Co layers of thicknesses ranging from 3~20 nm. Our results demonstrate that the optical parameters are crucial for the estimation of the temperature gradient induced by laser illumination for the study of thermally generated spin currents and related phenomena.

15.
Soft Matter ; 14(20): 4204-4212, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29756629

ABSTRACT

Recently developed electronic packaging materials based on low dimensional materials such as carbon nanotubes, graphene, and hexagonal boron nitride (h-BN) exhibit advantageous electrical, thermal, and mechanical properties for protecting electronic devices as well as dissipating heat flux from highly integrated circuits or high power electronic devices. Their thermal transport is mainly achieved by precise control of the nanostructure for nano-fillers to form the thermally conductive pathway. However, due to the viscoelastic behaviors of host polymeric materials, their phase or structural stability is significantly reduced by enhanced molecular motion at high temperature, resulting in poor thermal transport and mechanical strength. Here, we introduce flexible and robust h-BN foam sheets with a three-dimensional network structure, which exhibit much enhanced thermostability at high temperature. Furthermore, the additional infiltration of Fe3O4 nanoparticles into those structures results in relatively high electromagnetic absorbing performance. The combination of thermostability and mechanical strength based on the h-BN foam sheets provides novel opportunities for multifunctional thermally conductive materials in coatings and films without severely compromising auxiliary characteristics such as mechanical strength and thermal stability.

16.
Nat Commun ; 9(1): 138, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29305591

ABSTRACT

The original version of this Article contained an error in ref. 27, which was incorrectly given with the wrong journal name as:Meyer, S. et al. Observation of the spin Nernst effect. Nat. Phys. 16, 977-981 (2017).The correct form of ref. 27 is:Meyer, S. et al. Observation of the spin Nernst effect. Nat. Mater. 16, 977-981 (2017).This has now been corrected in the PDF and HTML versions of the Article.

17.
RSC Adv ; 8(54): 31037-31047, 2018 Aug 30.
Article in English | MEDLINE | ID: mdl-35548759

ABSTRACT

Abnormal levels of dopamine (DA) in body fluids is an indication of serious health issues, hence development of highly sensitive platforms for the precise detection of DA is highly essential. Herein, we demonstrate an Fe3O4@Cu silicate based electrochemical sensing platform for the detection of DA. Morphology and BET analysis shows the formation of ∼320 nm sized sea urchin-like Fe3O4@Cu silicate core-shell nanostructures with a 174.5 m2 g-1 surface area. Compared to Fe3O4 and Fe3O4@SiO2, the Fe3O4@Cu silicate urchins delivered enhanced performance towards the electrochemical sensing of DA in neutral pH. The Fe3O4@Cu silicate sensor has a 1.37 µA µM-1 cm-2 sensitivity, 100-700 µM linear range and 3.2 µM limit of detection (LOD). In addition, the proposed Fe3O4@Cu silicate DA sensor also has good stability, selectivity, reproducibility and repeatability. The presence of Cu in Fe3O4@Cu silicate and the negatively charged surface of the Cu silicate shell play a vital role in achieving high selectivity and sensitivity during DA sensing. The current investigation not only represents the development of a highly selective DA sensor but also directs towards the possibility for the fabrication of other Cu silicate based core-shell nanostructures for the precise detection of DA.

18.
Nat Commun ; 8(1): 1400, 2017 11 09.
Article in English | MEDLINE | ID: mdl-29123123

ABSTRACT

Electric generation of spin current via spin Hall effect is of great interest as it allows an efficient manipulation of magnetization in spintronic devices. Theoretically, pure spin current can be also created by a temperature gradient, which is known as spin Nernst effect. Here, we report spin Nernst effect-induced transverse magnetoresistance in ferromagnet/non-magnetic heavy metal bilayers. We observe that the magnitude of transverse magnetoresistance in the bilayers is significantly modified by heavy metal and its thickness. This strong dependence of transverse magnetoresistance on heavy metal evidences the generation of thermally induced pure spin current in heavy metal. Our analysis shows that spin Nernst angles of W and Pt have the opposite sign to their spin Hall angles. Moreover, our estimate implies that the magnitude of spin Nernst angle would be comparable to that of spin Hall angle, suggesting an efficient generation of spin current by the spin Nernst effect.

19.
Nat Commun ; 8(1): 796, 2017 10 06.
Article in English | MEDLINE | ID: mdl-28986562

ABSTRACT

The magnetic cooling effect originates from a large change in entropy by the forced magnetization alignment, which has long been considered to be utilized as an alternative environment-friendly cooling technology compared to conventional refrigeration. However, an ultimate timescale of the magnetic cooling effect has never been studied yet. Here, we report that a giant magnetic cooling (up to 200 K) phenomenon exists in the Co/Pt nano-multilayers on a femtosecond timescale during the photoinduced demagnetization and remagnetization, where the disordered spins are more rapidly aligned, and thus magnetically cooled, by the external magnetic field via the lattice-spin interaction in the multilayer system. These findings were obtained by the extensive analysis of time-resolved magneto-optical responses with systematic variation of laser fluence as well as external field strength and direction. Ultrafast giant magnetic cooling observed in the present study can enable a new avenue to the realization of ultrafast magnetic devices.The forced alignment of magnetic moments leads to a large change in entropy, which can be used to reduce the temperature of a material. Here, the authors show that this magnetic cooling effect occurs on a femtosecond time scale in cobalt-platinum nano-multilayers.

20.
Adv Mater ; 29(13)2017 Apr.
Article in English | MEDLINE | ID: mdl-28165161

ABSTRACT

Photonic Janus particles are created by alternately sputtering silica and titania on microspheres in order to obtain a structural color gradient. In addition, the microspheres are rendered magnetoresponsive. The Janus microspheres with optical and magnetic anisotropy enable on-demand control over orientation and structural color through manipulation of an external magnetic field, thereby being useful as active color pigments for reflection-mode displays.

SELECTION OF CITATIONS
SEARCH DETAIL
...