Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Langmuir ; 40(14): 7456-7462, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38546877

ABSTRACT

The primary constituents of honeybee venom, melittin and phospholipase A2 (PLA2), display toxin synergism in which the PLA2 activity is significantly enhanced by the presence of melittin. It has been shown previously that this is accomplished by the disruption in lipid packing, which allows PLA2 to become processive on the membrane surface. In this work, we show that melittin is capable of driving miscibility phase transition in giant unilamellar vesicles (GUVs) and that it raises the miscibility transition temperature (Tmisc) in a concentration-dependent manner. The induced phase separation enhances the processivity of PLA2, particularly at its boundaries, where a substantial difference in domain thickness creates a membrane discontinuity. The catalytic action of PLA2, in response, induces changes in the membrane, rendering it more conducive to melittin binding. This, in turn, facilitates further lipid phase separation and eventual vesicle lysis. Overall, our results show that melittin has powerful membrane-altering capabilities that activate PLA2 in various membrane contexts. More broadly, they exemplify how this biochemical system actively modulates and capitalizes on the spatial distribution of membrane lipids to efficiently achieve its objectives.


Subject(s)
Bee Venoms , Melitten , Melitten/pharmacology , Unilamellar Liposomes , Phospholipases A2 , Membrane Lipids
2.
RSC Adv ; 14(2): 1051-1055, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38174243

ABSTRACT

Metal-amino acid complexes are important compounds for the human body. Their nutritional value and anticancer, antibacterial, and catalytic properties are the focus of several studies. Density functional theory (DFT) can be used to predict their properties by optimizing their structures and performing electron population analyses. However, conventional computational methods cannot adequately determine the parameters of polymeric metal-amino acid complexes. Therefore, intermolecular interactions of polymers must be considered to correctly predict the properties of metal-amino acid and related metal complexes. In this study, different DFT protocols were used to acquire the infrared spectra and determine interatomic distances of two zinc-amino acid complexes, Zn(Gly)2 and Zn(Met)2. The results were compared to spectroscopic and X-ray crystallographic data, revealing that the M06 and M06-L functionals and the 6-311++G(d,p) basis set produced the smallest computational errors. Our results provide a foundation for future theoretical studies on other metal-amino acid and metal-organic complexes.

3.
Analyst ; 149(4): 1068-1073, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38265242

ABSTRACT

Signal amplification by reversible exchange hyperpolarization explores the chemical structure and kinetic properties of nicotinamide derivatives. N-Benzyl nicotinamide and nicotinic acid hydrazide compounds display relatively fast dissociation rates of approximately 7-8 s-1 and long proton T1 relaxation times of 5-20 s, respectively. Consequently, these substrates exhibit remarkable signal enhancements, reaching approximately 175 and 102 fold, respectively, underscoring the efficacy of the hyperpolarization technique in elucidating the behavior of these compounds.

4.
Chemosphere ; 349: 140781, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38006913

ABSTRACT

Chemical recycling of plastics is a promising approach for effectively depolymerizing plastic waste into its constituent monomers, thereby contributing to the realization of a sustainable circular economy. Glycolysis, which converts polyethylene terephthalate (PET) into the monomer bis(2-hydroxyethyl) terephthalate (BHET), has emerged as a cost-effective and commercially viable chemical recycling process. However, glycolysis requires long reaction times and high energy consumption, limiting its industrialization. In this study, we develop an energy-efficient microwave-assisted deep eutectic solvent-catalyzed glycolysis method to degrade PET effectively and rapidly, resulting in a high BHET yield. This combined approach enables the quantitative degradation of PET within 9 min, achieving a high BHET yield of approximately 99% under optimal reaction conditions. Furthermore, the proposed approach has a low specific energy consumption (45 kJ/g) and minimizes waste generation. The thermal behavior of PET and its degradation mechanism are systematically investigated using scanning electron microscopy and density functional theory-based calculations. The results obtained suggest that the proposed straightforward, swift, and energy-efficient strategy has the potential to offer a sustainable solution to plastic waste management challenges and expedite the industrialization of chemical recycling.


Subject(s)
Deep Eutectic Solvents , Polyethylene Terephthalates , Solvents , Microwaves , Glycolysis , Catalysis , Plastics
5.
Phys Chem Chem Phys ; 26(2): 1352-1363, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38108402

ABSTRACT

Several hole-transporting materials (HTMs) have been designed by incorporating different types of π-conjugation group such as long chain aliphatic alkenes and condensed aromatic rings of benzene and thiophene and their derivatives on both sides between the planar core and donor of a reference HTM. Various electronic, optical, and dynamic properties have been calculated by using DFT, TDDFT, and Marcus theory. In this study, all the designed HTMs show a lower HOMO energy level and match well with the perovskite absorbers. Inserting condensed rings results in better hole mobility compared to aliphatic double bonds. It is found that the charge transfer integral is the dominant factor which mainly influences the hole mobility in our studied HTMs. Other factors such as hole reorganization energy, hole hopping rate, and centroid distance have a minor effect on hole mobility. Thus, this study is expected to provide guidance for the design and synthesis of new HTMs with increased hole mobility.

6.
Waste Manag ; 174: 411-419, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38103351

ABSTRACT

To achieve a sustainable and circular economy, developing effective plastic recycling methods is essential. Despite advances in the chemical recycling of plastic waste, modern industries require highly efficient and sustainable solutions to address environmental problems. In this study, we propose an efficient glycolysis strategy for post-consumer polyethylene terephthalate (PET) using deep eutectic solvents (DESs) to produce bis(2-hydroxyethyl) terephthalate (BHET) with high selectivity. Choline chloride (ChCl)- and urea-based DESs were synthesized using various metal salts and were tested for the glycolysis of PET waste; ChCl-Zn(OAc)2 exhibited the best performance. The DES-containing solvent system afforded a complete PET conversion, producing BHET at a high yield (91.6%) under optimal reaction conditions. The degradation mechanism of PET and its interaction with DESs were systematically investigated using density functional theory-based calculations. Furthermore, an intuitive machine learning model was developed to predict the PET conversion and BHET selectivity for different DES compositions. Our findings demonstrate that the DES-catalyzed glycolysis of post-consumer PET could enable the development of a sustainable chemical recycling process, providing insights to identify the new design of DESs for plastic decomposition.


Subject(s)
Deep Eutectic Solvents , Polyethylene Terephthalates , Solvents/chemistry , Polyethylene Terephthalates/chemistry , Glycolysis , Catalysis
7.
Anal Chem ; 96(2): 694-700, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38153912

ABSTRACT

In the event of a chemical attack, the rapid identification of unknown chemical agents is critical for an effective emergency response and treatment of victims. However, identifying unknown compounds is difficult, particularly when relying on traditional methods such as gas and liquid chromatography-mass spectrometry (GC-MS, LC-MS). In this study, we developed a density functional theory and spectroscopy integrated identification method (D-SIIM) for the possible detection of unknown or unidentified terrorist materials, specifically chemical warfare agents (CWAs). The D-SIIM uses a combination of GC-MS, nuclear magnetic resonance (NMR) spectroscopy, infrared (IR) spectroscopy, and quantum chemical calculation-based NMR/IR predictions to identify potential CWA candidates based on their chemical signatures. Using D-SIIM, we successfully verified the presence of blister and nerve agent simulants in samples by excluding other compounds (ethyl propyl sulfide and methylphosphonic acid), which were predicted to be candidates with high probability by GC-MS. The findings of this study demonstrate that the D-SIIM can detect substances that are likely present in CWA mixtures and can be used to identify unknown terrorist chemicals.

8.
JACS Au ; 3(10): 2912-2917, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37885596

ABSTRACT

A water-compatible and recyclable catalyst for nuclear magnetic resonance (NMR) hyperpolarization via signal amplification by reversible exchange (SABRE) was developed. The [Ir(COD)(IMes)Cl] catalyst was attached to a polymeric resin of bis(2-pyridyl)amine (heterogeneous SABRE catalyst, HET-SABRE catalyst), and it amplified the 1H NMR signal of pyridine up to (-) 4455-fold (43.2%) at 1.4 T in methanol and (-) 50-fold (0.5%) in water. These are the highest amplification factors ever reported among HET-SABRE catalysts and for the first time in aqueous media. Moreover, the HET-SABRE catalyst demonstrated recyclability by retaining its activity in water after more than three uses. This newly designed polymeric resin-based heterogeneous catalyst shows great promise for NMR signal amplification for biomedical NMR and MRI applications in the future.

9.
ACS Meas Sci Au ; 3(2): 134-142, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37090259

ABSTRACT

Rufinamide, possessing a triazole ring, is a new antiepileptic drug (AED) relatively well-absorbed in the lower dose range (10 mg/kg per day) and is currently being used in antiepileptic medications. Triazole derivatives can interact with various enzymes and receptors in biological systems via diverse non-covalent interactions, thus inducing versatile biological effects. Strain-promoted azide-alkyne cycloaddition (SPAAC) is a significant method for obtaining triazoles, even under physiological conditions, in the absence of a copper catalyst. To confirm the progress of chemical reactions under biological conditions, research on reaction monitoring at low concentrations is essential. This promising strategy is gaining acceptance for applications in fields such as drug development and nanoscience. We investigated the optimum Ir catalyst and magnetic field for achieving maximum proton hyperpolarization transfer in triazole derivatives. These reactions were analyzed using signal amplification by reversible exchange (SABRE) to overcome the limitations of low sensitivity in nuclear magnetic resonance spectroscopy, when monitoring copper-free click reactions in real time. Finally, a more versatile copper-catalyzed click reaction was monitored in real time, using a 60 MHz benchtop NMR system, in order to analyze the reaction mechanism.

10.
Toxicol Rep ; 10: 27-31, 2023.
Article in English | MEDLINE | ID: mdl-36569478

ABSTRACT

Although the hydrolysis mechanism of the nerve agents, which is the main decontamination pathway, has been studied experimentally and theoretically, the reliable theoretical prediction method for the hydrolysis rate is not studied yet. Furthermore, after the CWC (Chemical Warfare Agent) list is updated, Novichok candidate structures can be more than 10,000 structures, for which it is not possible to perform the experiment for all of them for synthesizing and getting the hydrolysis rate. Therefore, developing a reliable theoretical method for hydrolysis rate prediction is crucial to prepare for the forthcoming usage of new types of nerve agents. Herein, by using DFT (Density Functional Theory), we successfully developed a new method of predicting the hydrolysis rate on nerve agents by investigating the electrophilicity index (EI) of the various A-, V-, and G-series nerve agents and found a suitable correlation with the experimental hydrolysis rate. Among the several DFT methods, wb97xD predicts the EI with the lowest % deviation of the studied nerve agents. Our results show that EI can be a good indicator to predict the hydrolysis rate of the anticipated nerve agents. Based on the result, we predicted the hydrolysis rate on another type of Novichok candidates, which could be the firm basis for developing a decontaminant and antidote with much fewer experimental efforts on new types of nerve agents.

11.
Sci Rep ; 12(1): 20288, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36434133

ABSTRACT

Following the recent terrorist attacks using Novichok agents and the subsequent decomposition operations, understanding the chemical structures of nerve agents has become important. To mitigate the ever-evolving threat of new variants, the Organization for the Prohibition of Chemical Weapons has updated the list of Schedule 1 substances defined by the Chemical Weapons Convention. However, owing to the several possible structures for each listed substance, obtaining an exhaustive dataset is almost impossible. Therefore, we propose a nuclear magnetic resonance-based prediction method for 1H and 13C NMR chemical shifts of Novichok agents based on conformational and density functional study calculations. Four organophosphorus compounds and five G- and V-type nerve agents were used to evaluate the accuracy of the proposed procedure. Moreover, 1H and 13C NMR prediction results for an additional 83 Novichok candidates were compiled as a database to aid future research and identification. Further, this is the first study to successfully predict the NMR chemical shifts of Novichok agents, with an exceptional agreement between predicted and experimental data. The conclusions enable the prediction of all possible structures of Novichok agents and can serve as a firm foundation for preparation against future terrorist attacks using new variants of nerve agents.


Subject(s)
Nerve Agents , Magnetic Resonance Spectroscopy/methods , Organophosphates , Magnetic Resonance Imaging
12.
Inorg Chem ; 61(48): 19369-19378, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36416377

ABSTRACT

Isosaccharinic acid, a major final product of cellulose degradation under highly alkaline cement porewater conditions, is known to increase the mobility of actinides via strong complex formation. In this study, the formation of Am(III) complexes with α-d-isosaccharinate (ISA) was studied in terms of thermodynamics and coordination structures by combining spectrophotometry, time-resolved laser fluorescence spectroscopy (TRLFS), and density functional theory (DFT) calculations. The formation constants of the Am(III)-ISA complexes were determined by absorption spectroscopy at temperatures in the range of 15-70 °C. The measured reaction enthalpy and entropy changes indicate that the formation of a 1:1 Am(III)-ISA complex is driven by an increase in entropy. By contrast, the 1:2 complex formation is exothermic with a much less increase in entropy. DFT calculations predict that C2- and C4-hydroxyl groups, along with the carboxyl group, participate in the tridentate chelate binding of the primary ISA. The thermodynamic, TRLFS, and DFT results collectively suggest the tridentate binding of the primary ISA to Am(III) via a carboxylate and C2- and C4-hydroxyl groups in the protonated state and reduced dentate binding of the secondary ISA, such as bidentate binding, forming a four-membered ring structure via the carboxylate group.

13.
RSC Adv ; 12(7): 4377-4381, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35425403

ABSTRACT

Our experiments indicate hyperpolarized proton signals in the entire structure of remdesivir are obtained due to a long-distance polarization transfer by para-hydrogen. SABRE-based biological real-time reaction monitoring, by using a protein enzyme under mild conditions is carried out. It represents the first successful para-hydrogen based hyperpolarization application in biological reaction monitoring.

14.
Molecules ; 27(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35268601

ABSTRACT

Density functional theory (DFT) is a widely used computational method for predicting the physical and chemical properties of metals and organometals. As the number of electrons and orbitals in an atom increases, DFT calculations for actinide complexes become more demanding due to increased complexity. Moreover, reasonable levels of theory for calculating the structures of actinide complexes are not extensively studied. In this study, 38 calculations, based on various combinations, were performed on molecules containing two representative actinides to determine the optimal combination for predicting the geometries of actinide complexes. Among the 38 calculations, four optimal combinations were identified and compared with experimental data. The optimal combinations were applied to a more complicated and practical actinide compound, the uranyl complex (UO2(2,2'-(1E,1'E)-(2,2-dimethylpropane-1,3-dyl)bis(azanylylidene)(CH3OH)), for further confirmation. The corresponding optimal calculation combination provides a reasonable level of theory for accurately optimizing the structure of actinide complexes using DFT.

15.
Molecules ; 27(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35268801

ABSTRACT

Majority of dynamic nuclear polarization (DNP) experiments have been requiring helium cryogenics and strong magnetic fields for a high degree of nuclear polarization. In this work, we instead demonstrate an optical hyperpolarization of naturally abundant 13C nuclei in a diamond crystal at a low magnetic field and the room temperature. It exploits continuous laser irradiation for polarizing electronic spins of nitrogen vacancy centers and microwave irradiation for transferring the electronic polarization to 13C nuclear spins. We have studied the dependence of 13C polarization on laser and microwave powers. For the first time, a triplet structure corresponding to the 14N hyperfine splitting has been observed in the 13C polarization spectrum. By simultaneously exciting three microwave frequencies at the peaks of the triplet, we have achieved 13C bulk polarization of 0.113 %, leading to an enhancement of 90,000 over the thermal polarization at 17.6 mT. We believe that the multi-tone irradiation can be extended to further enhance the 13C polarization at a low magnetic field.

16.
Chem Res Toxicol ; 35(5): 774-781, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35317551

ABSTRACT

The recent terrorist attacks using Novichok agents and subsequent operations have necessitated an understanding of its physicochemical properties, such as vapor pressure and toxicity, as well as unascertained nerve agent structures. To prevent continued threats from new types of nerve agents, the organization for the prohibition of chemical weapons (OPCW) updated the chemical weapons convention (CWC) schedule 1 list. However, this information is vague and may encompass more than 10 000 possible chemical structures, which makes it almost impossible to synthesize and measure their properties and toxicity. To assist this effort, we successfully developed machine learning (ML) models to predict the vapor pressure to help with escape and removal operations. The model shows robust and high-accuracy performance with promising features for predicting vapor pressure when applied to Novichok materials and accurate predictions with reasonable errors. The ML classification model was successfully built for the swallow globally harmonized system class of organophosphorus compounds (OP) for toxicity predictions. The tuned ML model was used to predict the toxicity of Novichok agents, as described in the CWC list. Although its accuracy and linearity can be improved, this ML model is expected to be a firm basis for developing more accurate models for predicting the vapor pressure and toxicity of nerve agents in the future to help handle future terror attacks with unknown nerve agents.


Subject(s)
Chemical Warfare Agents , Nerve Agents , Chemical Warfare Agents/analysis , Chemical Warfare Agents/toxicity , Machine Learning , Nerve Agents/chemistry , Nerve Agents/toxicity , Organophosphates/chemistry , Vapor Pressure
17.
JACS Au ; 1(8): 1158-1177, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34467355

ABSTRACT

NO3 • can compete with omnipotent •OH/SO4 •- in decomposing aqueous pollutants because of its lengthy lifespan and significant tolerance to background scavengers present in H2O matrices, albeit with moderate oxidizing power. The generation of NO3 •, however, is of grand demand due to the need of NO2 •/O3, radioactive element, or NaNO3/HNO3 in the presence of highly energized electron/light. This study has pioneered a singular pathway used to radicalize surface NO3 - functionalities anchored on polymorphic α-/γ-MnO2 surfaces (α-/γ-MnO2-N), in which Lewis acidic Mn2+/3+ and NO3 - served to form •OH via H2O2 dissection and NO3 • via radical transfer from •OH to NO3 - (•OH → NO3 •), respectively. The elementary steps proposed for the •OH → NO3 • route could be energetically favorable and marginal except for two stages such as endothermic •OH desorption and exothermic •OH-mediated NO3 - radicalization, as verified by EPR spectroscopy experiments and DFT calculations. The Lewis acidic strength of the Mn2+/3+ species innate to α-MnO2-N was the smallest among those inherent to α-/ß-/γ-MnO2 and α-/γ-MnO2-N. Hence, α-MnO2-N prompted the rate-determining stage of the •OH → NO3 • route (•OH desorption) in the most efficient manner, as also evidenced by the analysis on the energy barrier required to proceed with the •OH → NO3 • route. Meanwhile, XANES and in situ DRIFT spectroscopy experiments corroborated that α-MnO2-N provided a larger concentration of surface NO3 - species with bi-dentate binding arrays than γ-MnO2-N. Hence, α-MnO2-N could outperform γ-MnO2-N in improving the collision frequency between •OH and NO3 - species and in facilitating the exothermic transition of NO3 - functionalities to surface NO3 • analogues per unit time. These were corroborated by a greater efficiency of α-MnO2-N in decomposing phenol, in addition to scavenging/filtration control runs and DFT calculations. Importantly, supported NO3 • species provided 5-7-fold greater efficiency in degrading textile wastewater than conventional •OH and supported SO4 •- analogues we discovered previously.

18.
J Hazard Mater ; 411: 125144, 2021 06 05.
Article in English | MEDLINE | ID: mdl-33858104

ABSTRACT

Sulfur doped metal oxides were synthesized using a two-step precipitation method. When reacted against neat 2-CEES (2-chloroethyl-ethyl sulfide, a mustard gas simulant) under ambient conditions, sulfur doped mesoporous zinc oxide (MS-Zn) showed higher catalytic activity than the other metal oxides with 92.7% overall conversion in 24 h for a 2.5 µL neat 2-CEES droplet added on top of 2 × 2 cm large 400 mg catalyst layer. The reaction proceeded mainly by hydrolysis and further solvolysis reaction also occurred depending on the extracting solvents. Cyclic sulfonium ion intermediate reaction was thought to be involved in this reaction, and metal oxide surfaces were thought to facilitate the formation of sulfonium ions from adsorbed 2-CEES. All other by-products were also found to form via sulfonium ions, reconfirming the well-known importance of this intermediate species for the degradation reaction to proceed. The sulfur content for MS-Zn was varied and tested for degradation of neat 2-CEES. This modification showed that there is an optimal amount of sulfur content for the peak catalytic activity of MS-Zn for 2-CEES degradation. Adsorption energy of a 2-CEES molecule was calculated on model sulfur doped and non doped zinc oxide surfaces and the different adsorption energy levels were correlated with the catalytic activity of sulfur doped zinc oxide.

19.
Nanomaterials (Basel) ; 11(4)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33917143

ABSTRACT

Conventional or non-conventional chemical threat is gaining huge attention due to its unpredictable and mass destructive effects. Typical military protective suits have drawbacks such as high weight, bulky structure, and unpredictable lifetime. A durable, light, and scalable graphene e-fabric was fabricated from CVD-grown graphene by a simple co-lamination method. The sheet resistance was below 1 kΩ/sq over the wide surface area even after 1000 bending cycles. A graphene triboelectric nanogenerator showed the peak VOC of 68 V and the peak ICC of 14.4 µA and 1 µF capacitor was charged successfully in less than 1 s. A wearable chemical sensor was also fabricated and showed a sensitivity up to 53% for nerve chemical warfare agents (GD). DFT calculations were conducted to unveil the fundamental mechanisms underlying the graphene e-fabric sensor. Additionally, protection against chemical warfare agents was tested, and a design concept of graphene-based intelligent protective clothing has been proposed.

20.
Analyst ; 146(7): 2368-2373, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33634298

ABSTRACT

Signal amplification by reversible exchange (SABRE) is an effective NMR hyperpolarization technique for signal enhancement using para-hydrogen on iridium catalysts. To date, monodentate chelating nitrogen analogs have been predominantly used as substrates for SABRE because of the limited chelating sites of the Ir-catalyst with different molecular orientations. Herein, for the first time, the use of a tridentate chelating ligand (BPEA) containing pyridine moieties and a secondary amine as a SABRE substrate is demonstrated. For the optimization of the tridentate chelating ligand, alkyl chain lengths were varied with the optimization of the external magnetic field and concentrations of three different ligands. Because many chemically multidentate complexes present in nature have scarcely been studied as SABRE substrates, this optimized tridentate chelating ligand structure with the SABRE catalyst and its polarization transfer from para-hydrogen will broaden the scope of hyperpolarizable substrates and help in the investigation of chelating structures for future applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...