Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Med ; 87(1): 179-192, 2022 01.
Article in English | MEDLINE | ID: mdl-34418157

ABSTRACT

PURPOSE: To perform a quantitative evaluation of myelination on WT and myelin-deficient (shiverer) mouse spinal cords using ultrahigh-b diffusion-weighted imaging (UHb-DWI). METHODS: UHb-DWI of ex vivo on spinal cord specimens of two shiverer (C3HeB/FeJ-shiverer, homozygous genotype for MbPshi ) and six WT (Black Six, C3HeB/FeJ) mice were acquired using 3D multishot diffusion-weighted stimulated-echo EPI, a homemade RF coil, and a small-bore 7T MRI system. Imaging was performed in transaxial plane with 75 × 75 µm2 in-plane resolution, 1-mm-slice thickness, and radial DWI using bmax = 42,890 s/mm2 . Histological evaluation was performed on upper thoracic sections using optical and transmission electron microscopy. Numerical Monte Carlo simulations (MCSs) of water diffusion were performed to facilitate interpretation of UHb-DWI signal-b curves. RESULTS: The white matter ultrahigh-b radial DWI (UHb-rDWI) signal-b curves of WT mouse cords behaved biexponentially with high-b diffusion coefficient DH < 0.020 × 10-3 mm2 /s. However, as expected with less myelination, the signal-b of shiverer mouse cords behaved monoexponentially with significantly greater DH = 0.162 × 10-3 , 0.142 × 10-3 , and 0.164 × 10-3 mm2 /s at anterodorsal, posterodorsal, and lateral columns, respectively. The axial DWI signals of all mouse cords behaved monoexponentially with D = (0.718-1.124) × 10-3 mm2 /s. MCS suggests that these elevated DH are mainly induced by increased water exchange at the myelin sheath. Microscopic results were consistent with the UHb-rDWI findings. CONCLUSION: UHb-DWI provides quantitative differences in myelination of spinal cords from myelin-deficit shiverer and WT mice. UHb-DWI may become a powerful tool to evaluate myelination in demyelinating disease models that may translate to human diseases, including multiple sclerosis.


Subject(s)
Diffusion Magnetic Resonance Imaging , White Matter , Animals , Magnetic Resonance Imaging , Mice , Myelin Sheath , Spinal Cord/diagnostic imaging
2.
Magn Reson Imaging ; 61: 273-284, 2019 09.
Article in English | MEDLINE | ID: mdl-31009689

ABSTRACT

PURPOSE: The main objective of this study is to develop a 2D single-shot radial-DWI (2D ss-rDWI) technique to reduce motion artifacts and geometric distortion in DW images. METHOD: A diffusion-preparation module is developed and applied prior to the data acquisition. Because the diffusion-prepared longitudinal magnetization is measured over multiple RF excitations in each shot, 2D ss-rDWI is subject to low signal-to-noise ratio (SNR). We used variable-flip angle (VFA), random view ordering (RVO), and sliding spokes, and compared the performances to constant flip angle (CFA), smooth view ordering (SVO), and identical spoke averaging, respectively. For each technique, we performed numerical simulation and MRI experiments on a fluid phantom as well as in-vivo human brain studies with a 3 T MRI system. RESULTS: Using VFA, optimal SNR was acquired for 2D ss-rDWI. Using SVO, the high signal is clustered at specific quadrant in 2D k-space: the first quadrant using high initial flip angle or the last quadrant using the low flip angle. This clustered signal in k-space led to geometric distortion in image space. 2D ss-rDWI using RVO spreads the high signaled spokes over all angular directions and removes the view-order-related distortion. The in-vivo images using 2D ss-rDWI with VFA and RVO show no geometric distortion at the skull base brain, but greatly reduced SNR compared with those using 2D ss-DWEPI. CONCLUSION: 2D ss-rDWI is optimized by using VFA with RVO. The resultant DWI using 2D ss-rDWI is insensitive to motion-induced artifacts and geometric distortion. Even with low SNR, it may be useful for DWI of organs limited by severe susceptibility-induced geometric distortion.


Subject(s)
Diffusion Magnetic Resonance Imaging , Echo-Planar Imaging , Phantoms, Imaging , Signal-To-Noise Ratio , Algorithms , Animals , Artifacts , Brain/diagnostic imaging , Computer Simulation , Heart/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Models, Theoretical , Motion , Reproducibility of Results , Sheep , Signal Processing, Computer-Assisted , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...