Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Pathog ; 110: 645-653, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28733027

ABSTRACT

In this study, we isolated Bacillus licheniformis MH48 from rhizosphere soil and demonstrated that this strain shows significant antifungal activity against Rhizoctonia solani, Colletotrichum gloeosporioides, and Phytophthora capsici. Our results showed that a 50% concentration of bacterial cell-free culture filtrate of B. licheniformis MH48 shows strong activity against fungal pathogens. Benzoic acid produced by B. licheniformis MH48 was purified by various chromatographic techniques and identified by nuclear magnetic resonance and gas chromatography-mass spectrometry analysis. Benzoic acid displayed antifungal activity against R. solani and C. gloeosporides with minimum inhibitory concentration of 128 µg/mL against mycelial growth. Microscopic examination revealed that benzoic acid (50 µg/mL and 100 µg/mL) transformed C. gloeosporioides conidial morphology and inhibited conidial germination. In addition, benzoic acid (100 µg/mL and 200 µg/mL) degraded R. solani mycelia. Therefore, our results demonstrate that B. licheniformis MH48 strain shows potential for utility as a biological agent for the control of various fungal pathogens of plants.


Subject(s)
Antifungal Agents/pharmacology , Bacillus licheniformis/chemistry , Benzoic Acid/pharmacology , Biological Factors/pharmacology , Colletotrichum/drug effects , Phytophthora/drug effects , Rhizoctonia/drug effects , Antifungal Agents/isolation & purification , Bacillus licheniformis/isolation & purification , Benzoic Acid/isolation & purification , Biological Factors/isolation & purification , Chromatography , Colletotrichum/growth & development , Gas Chromatography-Mass Spectrometry , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Phytophthora/growth & development , Rhizoctonia/growth & development , Soil Microbiology , Spores, Fungal/drug effects , Spores, Fungal/growth & development
2.
J Basic Microbiol ; 55(7): 857-68, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25588946

ABSTRACT

In this study, a novel lipopeptide antibiotic was isolated from the culture supernatant of Paenibacillus ehimensis strain MA2012. After analyses by mass spectrometry (MS), nuclear magnetic resonance (NMR), and high resolution mass spectrometry (HR-MS/MS) the compound was identified to be polypeptin C consisting of 3-hydroxy-4-methyl-hexanoic acid moiety and nine amino acids as peptide body. It has the same molecular mass (1115 Da) with that of polypeptin A and B but the amino acid positions differ. A relatively low concentration (125 ppm) of polypeptin C lowered the surface tension of water from 72.2 to 36.4 mN/m. It showed antimicrobial activity against several plant pathogenic bacteria and fungi. When the polypeptin C was applied to the ripe pepper fruits previously inoculated with conidia of Colletotrichum gloeosporioides, the hyphal growth on the fruit was significantly suppressed. Moreover, the hyphal morphology of C. gloeosporioides was greatly affected by the purified compound. All these data suggest the great potential of P. ehimensis MA2012 to control plant fungal and bacterial diseases.


Subject(s)
Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Paenibacillus/metabolism , Polymyxins/isolation & purification , Polymyxins/pharmacology , Anti-Infective Agents/chemistry , Bacteria/drug effects , Biological Control Agents , Colletotrichum/drug effects , DNA, Ribosomal/chemistry , Fungi/drug effects , Hyphae/drug effects , Hyphae/growth & development , Microbial Sensitivity Tests , Molecular Weight , Polymyxins/biosynthesis , Polymyxins/chemistry , RNA, Ribosomal, 16S/metabolism , Surface Tension/drug effects , Tandem Mass Spectrometry , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...