Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Med (Lausanne) ; 9: 837197, 2022.
Article in English | MEDLINE | ID: mdl-35646983

ABSTRACT

The recent advent of the dynamic consent concept intensified the data integrity issue in clinical trials. Incorporating blockchain technology into a dynamic consent platform can be a feasible solution. Due to various clinical trial settings, a demand-driven development strategy is required. We developed a blockchain-based dynamic consent platform named METORY tailored for clinical trials. The platform consisted of three parts: web and mobile application user interface, study management platform, and blockchain platform. Hyperledger Fabric, an enterprise-grade private blockchain framework, was used to integrate blockchain into the study consent platform. We conducted user acceptance tests and applied feedback to the improvement of the platform. Identity and role-based access control was constructed by combining mobile-application-based certificate system and access control functionalities in Hyperledger fabric. Data were encrypted using SHA-256 prior to transmission to blockchain server and TLS protocol was used for in-transit encryption. File-system level encryption was separated implemented within the security measures from Amazon RDS. Users' experience in the clinical trial was acceptable in the ease and usefulness of the platform.

2.
Clin Transl Sci ; 15(5): 1257-1268, 2022 05.
Article in English | MEDLINE | ID: mdl-35157788

ABSTRACT

Blockchain is a novel data architecture characterized by a chronological sequence of blocks in a decentralized manner. We aimed to evaluate the real-world feasibility of a blockchain-based dynamic consent platform (METORY) in a decentralized and multicenter trial. The study consisted of three visits (i.e., screening and 2 follow-up visits) with a 2-week interval. Each subject was required to report the self-measured body temperatures and take a virtual investigational drug by entering the unique drug code on the application. To simulate real-world study settings, two major (i.e., changes in the schedule of body temperature measurement) and three minor protocol amendments (i.e., nonsignificant changes without any changes in the procedures) were set. Overall study completion rates, proportion of consent, and response time to each protocol amendment and adherence were evaluated. A total of 60 subjects (30 in each center) were enrolled in two study centers. All subjects completed the study, and the overall proportion of consent to each protocol amendment was 95.7 ± 13.7% (mean ± SD), with a median response time of 0.2 h. Overall, subjects took 90.8% ± 19.2% of the total drug, whereas compliance with the schedule was 69.1% ± 27.0%. Subjects reported 96.7% ± 4.2% of the total body temperature measurements whereas the adherence to the schedule was 59.0% ± 25.0%, which remarkably decreased after major protocol amendments. In conclusion, we evaluated a blockchain-based dynamic consent platform in real clinical trial settings. The results suggested that major changes should be avoided unless subjects' proper understanding is warranted.


Subject(s)
Blockchain , COVID-19 , Humans , Informed Consent , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...