Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 17(1): 599-604, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25407327

ABSTRACT

P3HT layers with a thickness of ∼5 nm were deposited on bare and TiO2-covered ZnO ripple structures. The ZnO ripples were prepared wet-chemically and a TiO2 layer with a thickness less than 5 nm was prepared by atomic layer deposition. Under humid air and visible light illumination, the oxidation behaviors of P3HT on these surfaces were studied using photoelectron spectroscopy. It was found that P3HT on TiO2/ZnO oxidizes more easily than that on bare ZnO ripples. Using a model substrate of a flat ZnO surface in combination with angle-resolved photoelectron spectroscopy, we found that oxidation of P3HT occurs at the surface of the topmost layer of P3HT, not at the P3HT/oxide interfaces, even though P3HT oxidation is strongly influenced by the interface structure. It is suggested that the lifetime of electron-hole pairs can be strongly influenced by the interface structure, which can also affect the oxidation behavior of P3HT.

2.
Langmuir ; 30(34): 10256-62, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25102134

ABSTRACT

Mesoporous silica with mean pore size of ∼14 nm was coated by polydimethylsiloxane (PDMS) using a thermal deposition method. We showed that the inner walls of pores larger than ∼8 nm can be coated by thin layers of PDMS, and the surfaces consisting of PDMS-coated silica were superhydrophobic, with water contact angles close to 170°. We used the PDMS-coated silica as adsorbents of various gas-phase chemical warfare agent (CWA) simulants. PDMS-coated silica allowed molecular desorption of various CWA simulants even after exposure under highly humid conditions and, therefore, is applicable as an agent for the preconcentration of gas-phase analytes to enhance the sensitivities of various sensors.

3.
ChemSusChem ; 7(11): 2998-3001, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25123894

ABSTRACT

Catalytic hydrogenation of organic carboxylic acids and their esters, for example, cellulosic ethanol from fermentation of acetic acid and hydrogenation of ethyl acetate is a promising possibility for future biorefinery concepts. A hybrid conversion process based on selective hydrogenation of butyric acid combined with fermentation of glucose has been developed for producing biobutanol. ZnO-supported Ru-Sn bimetallic catalysts exhibits unprecedentedly superior performance in the vapor-phase hydrogenation of biomass-derived butyric acid to n-butanol (>98% yield) for 3500 h without deactivation.


Subject(s)
1-Butanol/chemistry , Butyric Acid/chemistry , Ruthenium/chemistry , Tin/chemistry , Biomass , Catalysis , Fermentation , Glucose/chemistry , Hydrogenation , Zinc Oxide/chemistry
4.
ACS Appl Mater Interfaces ; 5(17): 8718-23, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-23951998

ABSTRACT

A ripple-structured ZnO film as the electron-collecting layer (ECL) of an inverted organic photovoltaic (OPV) was modified by atomic layer deposition (ALD) to add a ZnO thin layer. Depositing a thin ZnO layer by ALD on wet-chemically prepared ZnO significantly increased the short-circuit current (Jsc) of the OPV. The highest power conversion efficiency (PCE) of 7.96% with Jsc of 17.9 mA/cm2 was observed in the inverted OPV with a 2-nm-thick ALD-ZnO layer, which quenched electron-hole recombination at surface defects of ZnO ripples. Moreover, an ALD-ZnO layer thinner than 2 nm made the distribution of electrical conductivity on the ZnO surface more uniform, enhancing OPV performance. In contrast, a thicker ALD-ZnO layer (5 nm) made the two-dimensional distribution of electrical conductivity on the ZnO surface more heterogeneous, reducing the PCE. In addition, depositing an ALD-ZnO thin layer enhanced OPV stability and initial performance. We suggest that the ALD-ZnO layer thickness should be precisely controlled to fabricate high-performing OPVs.


Subject(s)
Solar Energy , Zinc Oxide/chemistry , Electrodes , Electrons , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...