Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Cent Sci ; 8(1): 110-117, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35111901

ABSTRACT

Detecting protein markers in extracellular vesicles (EVs) is becoming a useful tool for basic research and clinical diagnoses. Most EV protein assays, however, require lengthy processes-conjugating affinity ligands onto sensing substrates and affixing EVs with additional labels to maximize signal generation. Here, we present an iPEX (impedance profiling of extracellular vesicles) system, an all-electrical strategy toward fast, multiplexed EV profiling. iPEX adopts one-step electropolymerization to rapidly functionalize sensor electrodes with antibodies; it then detects EV proteins in a label-free manner through impedance spectroscopy. The approach streamlines the entire EV assay, from sensor preparation to signal measurements. We achieved (i) fast immobilization of antibodies (<3 min) per electrode; (ii) high sensitivity (500 EVs/mL) without secondary labeling; and (iii) parallel detection (quadruple) in a single chip. A potential clinical utility was demonstrated by directly analyzing plasma samples from glioblastoma multiforme patients.

2.
Adv Mater ; 34(8): e2107892, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34890082

ABSTRACT

Surface chemistry critically affects the diagnostic performance of biosensors. An ideal sensor surface should be resistant to nonspecific protein adsorption, yet be conducive to analytical responses. Here a new polymeric material, zwitterionic polypyrrole (ZiPPy), is reported to produce optimal surface condition for biosensing electrodes. ZiPPy combines two unique advantages: the zwitterionic function that efficiently hydrates electrode surface, hindering nonspecific binding of hydrophobic proteins; and the pyrrole backbone, which enables rapid (<7 min), controlled deposition of ZiPPy through electropolymerization. ZiPPy-coated electrodes show lower electrochemical impedance and less nonspecific protein adsorption (low fouling), outperforming bare and polypyrrole-coated electrodes. Moreover, affinity ligands for target biomarkers can be immobilized together with ZiPPy in a single-step electropolymerization. ZiPPy-coated electrodes are developed with specificity for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The prepared sensor detects SARS-CoV-2 antibodies in human saliva down to 50 ng mL-1 , without the need for sample purification or secondary labeling.


Subject(s)
Antibodies, Viral/analysis , Biosensing Techniques/methods , COVID-19/diagnosis , Polymers/chemistry , Pyrroles/chemistry , Biosensing Techniques/instrumentation , COVID-19/virology , Electrochemical Techniques , Electrodes , Electroplating , Gold/chemistry , Humans , Limit of Detection , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Saliva/metabolism , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...