Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3110, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600112

ABSTRACT

Homeodomains (HDs) are the second largest class of DNA binding domains (DBDs) among eukaryotic sequence-specific transcription factors (TFs) and are the TF structural class with the largest number of disease-associated mutations in the Human Gene Mutation Database (HGMD). Despite numerous structural studies and large-scale analyses of HD DNA binding specificity, HD-DNA recognition is still not fully understood. Here, we analyze 92 human HD mutants, including disease-associated variants and variants of uncertain significance (VUS), for their effects on DNA binding activity. Many of the variants alter DNA binding affinity and/or specificity. Detailed biochemical analysis and structural modeling identifies 14 previously unknown specificity-determining positions, 5 of which do not contact DNA. The same missense substitution at analogous positions within different HDs often exhibits different effects on DNA binding activity. Variant effect prediction tools perform moderately well in distinguishing variants with altered DNA binding affinity, but poorly in identifying those with altered binding specificity. Our results highlight the need for biochemical assays of TF coding variants and prioritize dozens of variants for further investigations into their pathogenicity and the development of clinical diagnostics and precision therapies.


Subject(s)
Homeodomain Proteins , Transcription Factors , Humans , Homeodomain Proteins/metabolism , Transcription Factors/metabolism , DNA/metabolism , Mutation , Models, Molecular
2.
bioRxiv ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38659802

ABSTRACT

Most genetic loci associated with complex traits and diseases through genome-wide association studies (GWAS) are noncoding, suggesting that the causal variants likely have gene regulatory effects. However, only a small number of loci have been linked to expression quantitative trait loci (eQTLs) detected currently. To better understand the potential reasons for many trait-associated loci lacking eQTL colocalization, we investigated whether chromatin accessibility QTLs (caQTLs) in lymphoblastoid cell lines (LCLs) explain immune-mediated disease associations that eQTLs in LCLs did not. The power to detect caQTLs was greater than that of eQTLs and was less affected by the distance from the transcription start site of the associated gene. Meta-analyzing LCL eQTL data to increase the sample size to over a thousand led to additional loci with eQTL colocalization, demonstrating that insufficient statistical power is still likely to be a factor. Moreover, further eQTL colocalization loci were uncovered by surveying eQTLs of other immune cell types. Altogether, insufficient power and context-specificity of eQTLs both contribute to the 'missing regulation.'

3.
Cell Genom ; 3(7): 100327, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37492098

ABSTRACT

Genome-wide association studies (GWASs) have uncovered numerous trait-associated loci across the human genome, most of which are located in noncoding regions, making interpretation difficult. Moreover, causal variants are hard to statistically fine-map at many loci because of widespread linkage disequilibrium. To address this challenge, we present a strategy utilizing transcription factor (TF) binding quantitative trait loci (bQTLs) for colocalization analysis to identify trait associations likely mediated by TF occupancy variation and to pinpoint likely causal variants using motif scores. We applied this approach to PU.1 bQTLs in lymphoblastoid cell lines and blood cell trait GWAS data. Colocalization analysis revealed 69 blood cell trait GWAS loci putatively driven by PU.1 occupancy variation. We nominate PU.1 motif-altering variants as the likely shared causal variants at 51 loci. Such integration of TF bQTL data with other GWAS data may reveal transcriptional regulatory mechanisms and causal noncoding variants underlying additional complex traits.

4.
bioRxiv ; 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37034747

ABSTRACT

Genome-wide association studies (GWAS) have uncovered numerous trait-associated loci across the human genome, most of which are located in noncoding regions, making interpretations difficult. Moreover, causal variants are hard to statistically fine-map at many loci because of widespread linkage disequilibrium. To address this challenge, we present a strategy utilizing transcription factor (TF) binding quantitative trait loci (bQTLs) for colocalization analysis to identify trait associations likely mediated by TF occupancy variation and to pinpoint likely causal variants using motif scores. We applied this approach to PU.1 bQTLs in lymphoblastoid cell lines and blood cell traits GWAS data. Colocalization analysis revealed 69 blood cell trait GWAS loci putatively driven by PU.1 occupancy variation. We nominate PU.1 motif-altering variants as the likely shared causal variants at 51 loci. Such integration of TF bQTL data with other GWAS data may reveal transcriptional regulatory mechanisms and causal noncoding variants underlying additional complex traits.

SELECTION OF CITATIONS
SEARCH DETAIL
...