Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 121(2): 507-523, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37905703

ABSTRACT

Bacterial adhesion and biofilm formation on surfaces pose a significant risk of microbial contamination and chronic diseases, leading to potential health complications. To mitigate this concern, the implementation of antibacterial coatings becomes paramount in reducing pathogen propagation on contaminated surfaces. To address this requirement, our study focuses on developing cost-effective and sustainable methods using polymer composite coatings. Copper and titanium dioxide nanoparticles were used to assess their active antimicrobial functions. After coating the surface with nanoparticles, four different combinations of two postprocessing treatments were performed. Intense pulsed light was utilized to sinter the coatings further, and plasma etching was applied to manipulate the physical properties of the nanocomposite-coated sheet surface. Bacterial viability was comparatively analyzed at four different time points (0, 30, 60, and 120 min) upon contact with the nanocomposite coatings. The samples with nanoparticle coatings and postprocessing treatments showed an above-average 84.82% mortality rate at 30 min and an average of 89.77% mortality rate at 120 min of contact. In contrast, the control sample, without nanoparticle coatings and postprocessing treatments, showed a 95% microbe viability after 120 min of contact. Through this study, we gained critical insights into effective strategies for preventing the spread of microorganisms on high-touch surfaces, thereby contributing to the advancement of sustainable antimicrobial coatings.


Subject(s)
Anti-Infective Agents , Nanocomposites , Nanoparticles , Anti-Bacterial Agents/pharmacology , Polymers , Coated Materials, Biocompatible/pharmacology , Titanium
2.
Sci Rep ; 11(1): 14551, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34267284

ABSTRACT

Additively printed circuits provide advantages in reduced waste, rapid prototyping, and versatile flexible substrate choices relative to conventional circuit printing. Copper (Cu) based inks along with intense pulsed light (IPL) sintering can be used in additive circuit printing. However, IPL sintered Cu typically suffer from poor solderability due to high roughness and porosity. To address this, hybrid Cu ink which consists of Cu precursor/nanoparticle was formulated to seed Cu species and fill voids in the sintered structure. Nickel (Ni) electroplating was utilized to further improve surface solderability. Simulations were performed at various electroplating conditions and Cu cathode surface roughness using the multi-physics finite element method. By utilizing a mask during IPL sintering, conductivity was induced in exposed regions; this was utilized to achieve selective Ni-electroplating. Surface morphology and cross section analysis of the electrodes were observed through scanning electron microscopy and a 3D optical profilometer. Energy dispersive X-ray spectroscopy analysis was conducted to investigate changes in surface compositions. ASTM D3359 adhesion testing was performed to examine the adhesion between the electrode and substrate. Solder-electrode shear tests were investigated with a tensile tester to observe the shear strength between solder and electrodes. By utilizing Cu precursors and novel multifaceted approach of IPL sintering, a robust and solderable Ni electroplated conductive Cu printed electrode was achieved.

3.
RSC Adv ; 11(39): 23881-23891, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-35479023

ABSTRACT

Supplies of respiratory masks have recently become a concern due to the onset of the SARS-CoV-2 pandemic. Sanitization and reuse of masks can alleviate high mask consumption and production stresses. In the present work, improved sanitization potency of vaporous hydrogen peroxide (VHP) treatment of resilient bacterial spores while retaining polymeric filter performance was explored. A batch fumigation chamber with hydrogen peroxide (H2O2) vapor and ozone (O3) is featured, followed by intense pulsed light (IPL) flash treatments. A resilient bacterial indicator, Geobacillus stearothermophilus (G. stearothermophilus), was utilized to compare the efficacy of various H2O2 concentrations in combination with O3 and IPL. It was found that exposure to 30 minutes of 4.01 L min-1 0.03% H2O2 aqueous vapor and 3 g h-1 O3 followed by 10 IPL flashes per side completely inactivated G. stearothermophilus. The xenon sourced IPL irradiation was found to synergistically enhance radical production and strengthen the complementary biocidal interaction of H2O2 with O3. Due to the synergistic effects, H2O2 was able to sanitize at a diluted concentration of 0.03% H2O2. The physical properties, such as surface potential, tensile strength, hydrophobicity, and filtration efficiency of >300 nm saline water aerosol of fibrous polypropylene (PP) sheets, were maintained. In addition, no residue of sanitizers was detected, thus confirming the biosafety and applicability of this method to disposable masks. Performance was benchmarked and compared with commercially available processes. The synergistic regime was found to achieve sterilization of G. stearothermophilus at drastically reduced H2O2 concentrations and in ambient conditions relative to commercial methods.

4.
Procedia Manuf ; 48: 1155, 2020.
Article in English | MEDLINE | ID: mdl-35438950

ABSTRACT

[This corrects the article DOI: 10.1016/j.promfg.2020.05.108.].

SELECTION OF CITATIONS
SEARCH DETAIL
...