Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Small ; : e2404734, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38966904

ABSTRACT

The morphology of the active layer is crucial for highly efficient organic solar cells (OSCs), which can be regulated by selecting a rational third component. In this work, the highly crystalline nonfullerene acceptor BTP-eC9 is selected as the morphology regulator in OSCs with PM6:BTP-BO-4Cl as the main system. The addition of BTP-eC9 can prolong the nucleation and crystallization progress of acceptor and donor molecules, thereby enhancing the order of molecular arrangement. Meanwhile, the nucleation and crystallization time of the donor is earlier than that of the acceptors after introducing BTP-eC9, which is beneficial for obtaining a better vertical structural phase separation. The exciton dissociation, charge transport, and charge collection are promoted effectively by the optimized morphology of the active layer, which improves the short-circuit current density and filling factor. After introducing BTP-eC9, the power conversion efficiencies (PCEs) of the ternary OSCs are improved from 17.31% to 18.15%. The PCE is further improved to 18.39% by introducing gold nanopyramid (Au NBPs) into the hole transport layer to improve photon utilization efficiency. This work indicates that the morphology can be optimized by selecting a highly crystalline third component to regulate the nucleation and crystallization progress of the acceptor and donor molecules.

2.
Small ; : e2403486, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-39031678

ABSTRACT

The development of high-performance organic photovoltaic materials is of crucial importance for the commercialization of organic solar cells (OSCs). Herein, two structurally simple donor-π-conjugated linker-acceptor (D-π-A)-configured small-molecule donors with methyl-substituted triphenylamine as D unit, 1,1-dicyanomethylene-3-indanone as A unit, and thiophene or furan as π-conjugated linker, named DTICPT and DTICPF, are developed. DTICPT and DTICPF are facilely prepared via a two-step synthetic process with simple procedures. DTICPF with a furan π-conjugated linker exhibits stronger and broader optical absorption, deeper highest occupied molecular orbital (HOMO) energy levels, and better charge transport, compared to its thiophene analog DTICPT. As a result, vacuum-deposited OSCs based on DTICPF: C70 show an impressive power conversion efficiency (PCE) of 9.36% (certified 9.15%) with short-circuit current density (Jsc) up to 17.49 mA cm-2 (certified 17.56 mA cm-2), which is the highest Jsc reported so far for vacuum-deposited OSCs. Besides, devices based on DTICPT: C70 and DTICPF: C70 exhibit excellent long-term stability under different aging conditions. This work offers important insights into the rational design of D-π-A configured small-molecule donors for high efficient and stable vacuum-deposited OSCs.

3.
Angew Chem Int Ed Engl ; : e202408537, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973771

ABSTRACT

Achieving high electrical conductivity (σ) and power factor (PF) simultaneously remains a significant challenge for n-type organic themoelectrics (OTEs). Herein, we demonstrate the state-of-the-art OTEs performance through blending a fused bithiophene imide dimer-based polymer f-BTI2g-SVSCN and its selenophene-substituted analogue f-BSeI2g-SVSCN with a julolidine-functionalized benzimidazoline n-dopant JLBI, vis-à-vis when blended with commercially available n-dopants TAM and N-DMBI. The advantages of introducing a more lipophilic julolidine group into the dopant structure of JLBI are evidenced by the enhanced OTEs performance that JLBI-doped films show when compared to those doped with N-DMBI or TAM. In fact, thanks to the enhanced intermolecular interactions and the lower-lying LUMO level enabled by the increase of selenophene content in polymer backbone, JLBI-doped films of f-BSeI2g-SVSCN exhibit a unprecedent σ of 206 S cm-1 and a PF of 114 µW m-1 K-2. Interestingly, σ can be further enhanced up to 326 S cm-1 by using TAM dopant as a consequence of its favorable diffusion behavior into densely packed crystalline domains. These values are the highest to date for solution-processed molecularly n-doped polymers, demonstrating the effectiveness of the polymer-dopant matching approach carried out in this work.

4.
ACS Appl Mater Interfaces ; 16(27): 35400-35409, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38917455

ABSTRACT

A series of dual-band photomultiplication (PM)-type organic photodetectors (OPDs) were fabricated by employing a donor(s)/acceptor (100:1, wt/wt) mixed layer and an ultrathin Y6 layer as the active layers, as well as by using PNDIT-F3N as an interfacial layer near the indium tin oxide (ITO) electrode. The dual-band PM-type OPDs exhibit the response range of 330-650 nm under forward bias and the response range of 650-850 nm under reverse bias. The tunable spectral response range of dual-band PM-type OPDs under forward or reverse bias can be explained well from the trapped electron distribution near the electrodes. The dark current density (JD) of the dual-band PM-type OPDs can be efficiently suppressed by employing PNDIT-F3N as the anode interfacial layer and the special active layers with hole-only transport characteristics. The light current density (JL) of the dual-band PM-type OPDs can be slightly increased by incorporating wide-bandgap polymer P-TPDs with relatively large hole mobility (µh) in the active layers. The signal-to-noise ratios of the optimized dual-band PM-type OPDs reach 100,980 under -50 V bias and white light illumination with an intensity of 1.0 mW·cm-2, benefiting from the ultralow JD by employing wide-bandgap PNDIT-F3N as the anode interfacial buffer layer and the increased JL by incorporating appropriate P-TPD in the active layers.

5.
Nature ; 630(8015): 96-101, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750361

ABSTRACT

Chemical doping is an important approach to manipulating charge-carrier concentration and transport in organic semiconductors (OSCs)1-3 and ultimately enhances device performance4-7. However, conventional doping strategies often rely on the use of highly reactive (strong) dopants8-10, which are consumed during the doping process. Achieving efficient doping with weak and/or widely accessible dopants under mild conditions remains a considerable challenge. Here, we report a previously undescribed concept for the photocatalytic doping of OSCs that uses air as a weak oxidant (p-dopant) and operates at room temperature. This is a general approach that can be applied to various OSCs and photocatalysts, yielding electrical conductivities that exceed 3,000 S cm-1. We also demonstrate the successful photocatalytic reduction (n-doping) and simultaneous p-doping and n-doping of OSCs in which the organic salt used to maintain charge neutrality is the only chemical consumed. Our photocatalytic doping method offers great potential for advancing OSC doping and developing next-generation organic electronic devices.

6.
J Am Chem Soc ; 146(23): 15860-15868, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38814791

ABSTRACT

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a benchmark hole-transporting (p-type) polymer that finds applications in diverse electronic devices. Most of its success is due to its facile synthesis in water, exceptional processability from aqueous solutions, and outstanding electrical performance in ambient. Applications in fields like (opto-)electronics, bioelectronics, and energy harvesting/storage devices often necessitate the complementary use of both p-type and n-type (electron-transporting) materials. However, the availability of n-type materials amenable to water-based polymerization and processing remains limited. Herein, we present a novel synthesis method enabling direct polymerization in water, yielding a highly conductive, water-processable n-type conjugated polymer, namely, poly[(2,2'-(2,5-dihydroxy-1,4-phenylene)diacetic acid)-stat-3,7-dihydrobenzo[1,2-b:4,5-b']difuran-2,6-dione] (PDADF), with remarkable electrical conductivity as high as 66 S cm-1, ranking among the highest for n-type polymers processed using green solvents. The new n-type polymer PDADF also exhibits outstanding stability, maintaining 90% of its initial conductivity after 146 days of storage in air. Our synthetic approach, along with the novel polymer it yields, promises significant advancements for the sustainable development of organic electronic materials and devices.

7.
Adv Sci (Weinh) ; 11(28): e2309786, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38760898

ABSTRACT

A universal approach for enhancing water affinity in polymer photocatalysts by covalently attaching hydrophilic photocrosslinkers to polymer chains is presented. A series of bisdiazirine photocrosslinkers, each comprising bisdiazirine photophores linked by various aliphatic (CL-R) or ethylene glycol-based bridge chains (CL-TEG), is designed to prevent crosslinked polymer photocatalysts from degradation through a safe and efficient photocrosslinking reaction at a wavelength of 365 nm. When employing the hydrophilic CL-TEG as a photocrosslinker with polymer photocatalysts (F8BT), the hydrogen evolution reaction (HER) rate is considerably enhanced by 2.5-fold compared to that obtained using non-crosslinked F8BT photocatalysts, whereas CL-R-based photocatalysts yield HER rates comparable to those of non-crosslinked counterparts. Photophysical analyses including time-resolved photoluminescence and transient absorption measurements reveal that adding CL-TEG accelerates exciton separation, forming long-lived charge carriers. Additionally, the in-depth study using molecular dynamics simulations elucidates the dual role of CL-TEG: it enhances water penetration into the polymer matrix and stabilizes charge carriers after exciton generation against undesirable recombination. Therefore, the strategy highlights endowing a high-permittivity environment within polymer photocatalyst in a controlled manner is crucial for enhancing photocatalytic redox reactivity. Furthermore, this study shows that this hydrophilic crosslinker approach has a broad applicability in general polymer semiconductors and their nanoparticulate photocatalysts.

8.
Angew Chem Int Ed Engl ; : e202407273, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770935

ABSTRACT

A new approach to control the n-doping reaction of organic semiconductors is reported using surface-functionalized gold nanoparticles (f-AuNPs) with alkylthiols acting as the catalyst only upon mild thermal activation. To demonstrate the versatility of this methodology, the reaction of the n-type dopant precursor N-DMBI-H with several molecular and polymeric semiconductors at different temperatures with/without f-AuNPs, vis-à-vis the unfunctionalized catalyst AuNPs, was investigated by spectroscopic, morphological, charge transport, and kinetic measurements as well as, computationally, the thermodynamic of catalyst activation. The combined experimental and theoretical data demonstrate that while f-AuNPs is inactive at room temperature both in solution and in the solid state, catalyst activation occurs rapidly at mild temperatures (~70 °C) and the doping reaction completes in few seconds affording large electrical conductivities (~10-140 S cm-1). The implementation of this methodology enables the use of semiconductor+dopant+catalyst solutions and will broaden the use of the corresponding n-doped films in opto-electronic devices such as thin-film transistors, electrochemical transistors, solar cells, and thermoelectrics well as guide the design of new catalysts.

9.
Angew Chem Int Ed Engl ; 63(17): e202319627, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38443313

ABSTRACT

High-performing n-type polymers are crucial for the advance of organic electronics field, however strong electron-deficient building blocks with optimized physicochemical properties for constructing them are still limited. The imide-functionalized polycyclic aromatic hydrocarbons (PAHs) with extended π-conjugated framework, high electron deficiency and good solubility serve as promising candidates for developing high-performance n-type polymers. Among the PAHs, phenanthrene (PhA) features a well-delocalized aromatic π-system with multiple modifiable active sites . However, the PhA-based imides are seldom studied, mainly attributed to the synthetic challenge. Herein, we report two functionalized PhAs, CPOI and CPCNI, by simultaneously incorporating imide with carbonyl or dicyanomethylene onto PhA. Notably, the dicyanomethylene-modified CPCNI exhibits a well stabilized LUMO energy level (-3.84 eV), attributed to the synergetic inductive effect from imide and cyano groups. Subsequently, based on CPOI and CPCNI, two polymers PCPOI-Tz and PCPCNI-Tz were developed. Applied to organic thin-film transistors, owing to the strong electron-deficiency of CPCNI, polymer PCPCNI-Tz shows an improved electron mobility and largely decreased threshold voltage compared with PCPOI-Tz. This work affords two structurally novel electron-deficient building blocks and highlights the effectiveness of dual functionalization of PhAs with strong electron-withdrawing groups for devising n-type polymers.

10.
Adv Mater ; 36(4): e2305416, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37572077

ABSTRACT

Developing high-performance n-type polymer mixed ionic-electronic conductors (PMIECs) is a grand challenge, which largely determines their applications in vaious organic electronic devices, such as organic electrochemical transistors (OECTs) and organic thermoelectrics (OTEs). Herein, two halogen-functionalized PMIECs f-BTI2g-TVTF and f-BTI2g-TVTCl built from fused bithiophene imide dimer (f-BTI2) as the acceptor unit and halogenated thienylene-vinylene-thienylene (TVT) as the donor co-unit are reported. Compared to the control polymer f-BTI2g-TVT, the fluorinated f-BTI2g-TVTF shows lower-positioned lowest unoccupied molecular orbital (LUMO), improved charge transport property, and greater ion uptake capacity. Consequently, f-BTI2g-TVTF delivers a state-of-the-art µC* of 90.2 F cm-1 V-1 s-1 with a remarkable electron mobility of 0.41 cm2 V-1 s-1 in OECTs and an excellent power factor of 64.2 µW m-1 K-2 in OTEs. An OECT-based inverter amplifier is further demonstrated with voltage gain up to 148 V V-1 , which is among the highest values for OECT inverters. Such results shed light on the impacts of halogen atoms on developing high-performing n-type PMIECs.

11.
Adv Mater ; 36(2): e2307523, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37972308

ABSTRACT

The development of organic-based optoelectronic technologies for the indoor Internet of Things market, which relies on ambient energy sources, has increased, with organic photovoltaics (OPVs) and photodetectors (OPDs) considered promising candidates for sustainable indoor electronic devices. However, the manufacturing processes of standalone OPVs and OPDs can be complex and costly, resulting in high production costs and limited scalability, thus limiting their use in a wide range of indoor applications. This study uses a multi-component photoactive structure to develop a self-powering dual-functional sensory device with effective energy harvesting and sensing capabilities. The optimized device demonstrates improved free-charge generation yield by quantifying charge carrier dynamics, with a high output power density of over 81 and 76 µW cm-2 for rigid and flexible OPVs under indoor conditions (LED 1000 lx (5200 K)). Furthermore, a single-pixel image sensor is demonstrated as a feasible prototype for practical indoor operating in commercial settings by leveraging the excellent OPD performance with a linear dynamic range of over 130 dB in photovoltaic mode (no external bias). This apparatus with high-performance OPV-OPD characteristics provides a roadmap for further exploration of the potential, which can lead to synergistic effects for practical multifunctional applications in the real world by their mutual relevance.

12.
Faraday Discuss ; 250(0): 335-347, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-37965681

ABSTRACT

The scarcity of n-type polymers with high electrical conductivity (σ) and power factor (PF) is the major challenge for organic thermoelectrics (OTEs). By integrating cyano functionalities and an intramolecular conformation lock, we herein synthesize a new electron-deficient building block, CNg4T2, bearing long 1,4,7,10-tetraoxahendecyl side chains, and then further develop two n-type polythiophene derivatives, CNg4T2-2FT and CNg4T2-CNT2, with 3,4-difluorothiophene and 3,3'-dicyano-2,2'-bithiophene as co-units, respectively. Compared with CNg4T2-2FT, CNg4T2-CNT2 features a deeper-positioned lowest unoccupied molecular orbital (LUMO) while maintaining a high degree of backbone coplanarity. As a consequence, the CNg4T2-CNT2 film with molecular dopant N-DMBI delivered an impressive σ of 13.2 S cm-1 and a high PF of up to 10.84 µW m-1 K-2, significantly outperforming CNg4T2-2FT and benchmark n-type polymer N2200 films. To the best of our knowledge, this PF of CNg4T2-CNT2 devices is the highest value for n-type polythiophenes in OTEs. Further characterizations indicate that the high performance of CNg4T2-CNT2-based devices is attributed to the high doping efficiency and ordered packing of polymer chains. Our study demonstrates that CNg4T2 is a highly appealing electron-deficient building block for n-type OTE polymers and also suggests that fine-tuning of the polymer backbone is a powerful approach to accessing high-performance n-type polymers for OTE devices.

13.
Adv Mater ; 36(1): e2310503, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37961011

ABSTRACT

High-performance n-type polymeric mixed ionic-electronic conductors (PMIECs) are essential for realizing organic electrochemical transistors (OECTs)-based low-power complementary circuits and biosensors, but their development still remains a great challenge. Herein, by devising two novel n-type polymers (f-BTI2g-SVSCN and f-BSeI2g-SVSCN) containing varying selenophene contents together with their thiophene-based counterpart as the control, it is demonstrated that gradually increasing selenophene loading in polymer backbones can simultaneously yield lowered lowest unoccupied molecular orbital levels, boosted charge-transport properties, and improved ion-uptake capabilities. Therefore, a remarkable volumetric capacitance (C*) of 387.2 F cm-3 and a state-of-the-art OECT electron mobility (µe,OECT ) of 0.48 cm2 V-1 s-1 are synchronously achieved for f-BSeI2g-SVSCN having the highest selenophene content, yielding an unprecedented geometry-normalized transconductance (gm,norm ) of 71.4 S cm-1 and record figure of merit (µC*) value of 191.2 F cm-1 V-1 s-1 for n-type OECTs. Thanks to such excellent performance of f-BSeI2g-SVSCN-based OECTs, a glucose sensor with a remarkably low detection limit of 10 nMm and decent selectivity is further implemented, demonstrating the power of selenophene substitution strategy in enabling high-performance n-type PMIECs for biosensing applications.

14.
Small ; 20(12): e2308216, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37946696

ABSTRACT

The ternary strategy is one of the effective methods to regulate the morphology of the active layer in organic solar cells (OSCs). In this work, the ternary OSCs with bulk heterojunction (BHJ) or layer-by-layer (LbL) active layers are prepared by using the polymer donor PM6 and the non-fullerene acceptor L8-BO as the main system and the fullerene acceptor PC71BM as the third component. The power conversion efficiencies (PCEs) of BHJ OSCs and LbL OSCs are increased from 17.10% to 18.02% and from 17.20% to 18.20% by introducing PC71BM into the binary active layer, respectively. The in situ UV-vis absorption spectra indicate that the molecular aggregation and crystallization process can be prolonged by introducing PC71BM into the PM6:L8-BO or PM6/L8-BO active layer. The molecular orientation and molecular crystallinity in the active layer are optimized by introducing the PC71BM into the binary BHJ or LbL active layers, which can be confirmed by the experimental results of grazing incidence wide-angle X-ray scattering. This study demonstrates that the third component PC71BM can be used as a morphology regulator to regulate the morphology of BHJ or LbL active layers, thus effectively improving the performance of BHJ and LbL OSCs.

15.
Angew Chem Int Ed Engl ; 63(3): e202316214, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37996990

ABSTRACT

Developing polymers with high electrical conductivity (σ) after n-doping is a great challenge for the advance of the field of organic thermoelectrics (OTEs). Herein, we report a series of thiazole imide-based n-type polymers by gradually increasing selenophene content in polymeric backbone. Thanks to the strong intramolecular noncovalent N⋅⋅⋅S interaction and enhanced intermolecular Se⋅⋅⋅Se interaction, with the increase of selenophene content, the polymers show gradually lowered LUMOs, more planar backbone, and improved film crystallinity versus the selenophene-free analogue. Consequently, polymer PDTzSI-Se with the highest selenophene content achieves a champion σ of 164.0 S cm-1 and a power factor of 49.0 µW m-1 K-2 in the series when applied in OTEs after n-doping. The σ value is the highest one for n-type donor-acceptor OTE materials reported to date. Our work indicates that selenophene substitution is a powerful strategy for developing high-performance n-type OTE materials and selenophene incorporated thiazole imides offer an excellent platform in enabling n-type polymers with high backbone coplanarity, deep-lying LUMO and enhanced mobility/conductivity.

16.
Nat Commun ; 14(1): 8454, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38114560

ABSTRACT

Water-based conductive inks are vital for the sustainable manufacturing and widespread adoption of organic electronic devices. Traditional methods to produce waterborne conductive polymers involve modifying their backbone with hydrophilic side chains or using surfactants to form and stabilize aqueous nanoparticle dispersions. However, these chemical approaches are not always feasible and can lead to poor material/device performance. Here, we demonstrate that ground-state electron transfer (GSET) between donor and acceptor polymers allows the processing of water-insoluble polymers from water. This approach enables macromolecular charge-transfer salts with 10,000× higher electrical conductivities than pristine polymers, low work function, and excellent thermal/solvent stability. These waterborne conductive films have technological implications for realizing high-performance organic solar cells, with efficiency and stability superior to conventional metal oxide electron transport layers, and organic electrochemical neurons with biorealistic firing frequency. Our findings demonstrate that GSET offers a promising avenue to develop water-based conductive inks for various applications in organic electronics.

17.
Adv Sci (Weinh) ; 10(29): e2302629, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37553779

ABSTRACT

n-Doped polymers with high electrical conductivity (σ) are still very scarce in organic thermoelectrics (OTEs), which limits the development of efficient organic thermoelectric generators. A series of fused bithiophene imide dimer-based polymers, PO8, PO12, and PO16, incorporating distinct oligo(ethylene glycol) side-chain to optimize σ is reported here. Three polymers show a monotonic electron mobility decrease as side-chain size increasing due to the gradually lowered film crystallinity and change of backbone orientation. Interestingly, polymer PO12 with a moderate side-chain size delivers a champion σ up to 92.0 S cm-1 and a power factor (PF) as high as 94.3 µW m-1 K-2 in the series when applied in OTE devices. The PF value is among the highest ones for the solution-processing n-doped polymers. In-depth morphology studies unravel that the moderate crystallinity and the formation of 3D conduction channel derived from bimodal orientation synergistically contribute to high doping efficiency and large charge carrier mobility, thus resulting in high performance for the PO12-based OTEs. The results demonstrate the great power of simple tuning of side chain in developing n-type polymers with substantial σ for improving organic thermoelectric performance.

18.
Adv Mater ; 35(39): e2303665, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37459560

ABSTRACT

The buried interface in perovskite solar cells (PSCs) is pivotal for achieving high efficiency and stability. However, it is challenging to study and optimize the buried interface due to its non-exposed feature. Here, a facile and effective strategy is developed to modify the SnO2 /perovskite buried interface by passivating the buried defects in perovskite and modulating carrier dynamics via incorporating formamidine oxalate (FOA) in SnO2 nanoparticles. Both formamidinium and oxalate ions show a longitudinal gradient distribution in the SnO2 layer, mainly accumulating at the SnO2 /perovskite buried interface, which enables high-quality upper perovskite films, minimized defects, superior interface contacts, and matched energy levels between perovskite and SnO2 . Significantly, FOA can simultaneously reduce the oxygen vacancies and tin interstitial defects on the SnO2 surface and the FA+ /Pb2+ associated defects at the perovskite buried interface. Consequently, the FOA treatment significantly improves the efficiency of the PSCs from 22.40% to 25.05% and their storage- and photo-stability. This method provides an effective target therapy of buried interface in PSCs to achieve very high efficiency and stability.

19.
Mater Horiz ; 10(10): 4213-4223, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37477499

ABSTRACT

Organic electrochemical transistors (OECTs) are a rapidly advancing technology that plays a crucial role in the development of next-generation bioelectronic devices. Recent advances in p-type/n-type organic mixed ionic-electronic conductors (OMIECs) have enabled power-efficient complementary OECT technologies for various applications, such as chemical/biological sensing, large-scale logic gates, and neuromorphic computing. However, ensuring long-term operational stability remains a significant challenge that hinders their widespread adoption. While p-type OMIECs are generally more stable than n-type OMIECs, they still face limitations, especially during prolonged operations. Here, we demonstrate that simple methylation of the pyrrole-benzothiazine-based (PBBT) ladder polymer backbone results in stable and high-performance p-type OECTs. The methylated PBBT (PBBT-Me) exhibits a 25-fold increase in OECT mobility and an impressive 36-fold increase in µC* (mobility × volumetric capacitance) compared to the non-methylated PBBT-H polymer. Combining the newly developed PBBT-Me with the ladder n-type poly(benzimidazobenzophenanthroline) (BBL), we developed complementary inverters with a record-high DC gain of 194 V V-1 and excellent stability. These state-of-the-art complementary inverters were used to demonstrate leaky integrate-and-fire type organic electrochemical neurons (LIF-OECNs) capable of biologically relevant firing frequencies of about 2 Hz and of operating continuously for up to 6.5 h. This achievement represents a significant improvement over previous results and holds great potential for developing stable bioelectronic circuits capable of in-sensor computing.

20.
Angew Chem Int Ed Engl ; 62(45): e202302888, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37380618

ABSTRACT

The determination of molecular conformations of oligomeric acceptors (OAs) and their impact on molecular packing are crucial for understanding the photovoltaic performance of their resulting polymer solar cells (PSCs) but have not been well studied yet. Herein, we synthesized two dimeric acceptor materials, DIBP3F-Se and DIBP3F-S, which bridged two segments of Y6-derivatives by selenophene and thiophene, respectively. Theoretical simulation and experimental 1D and 2D NMR spectroscopic studies prove that both dimers exhibit O-shaped conformations other than S- or U-shaped counter-ones. Notably, this O-shaped conformation is likely governed by a distinctive "conformational lock" mechanism, arising from the intensified intramolecular π-π interactions among their two terminal groups within the dimers. PSCs based on DIBP3F-Se deliver a maximum efficiency of 18.09 %, outperforming DIBP3F-S-based cells (16.11 %) and ranking among the highest efficiencies for OA-based PSCs. This work demonstrates a facile method to obtain OA conformations and highlights the potential of dimeric acceptors for high-performance PSCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...