Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 23092, 2023 12 28.
Article in English | MEDLINE | ID: mdl-38155215

ABSTRACT

We aimed to explore the association of functional outcomes with psychological variables, including depression, anxiety, sleep quality, and suicide risk, in persons with spinal cord injuries (SCIs). The secondary aim was to determine specific functions related to the psychological variables. This retrospective study included 259 persons with SCIs who were admitted to the Korean National Rehabilitation Center between 2019 and 2021. The participants were interviewed by a psychiatrist and completed questionnaires, including the Korean Beck Depression Inventory II (K-BDI-II), Korean Beck Anxiety Index, Insomnia Severity Index, and Mini International Neuropsychiatric Interview. To assess functional outcomes, the Spinal Cord Independence Measure III (SCIM III) and Walking Index for Spinal Cord Injury were determined by a physical therapist. The findings revealed a negative correlation of SCIM III subdivisions 1 and 3 with K-BDI-II. Specifically, feeding and mobility in bed and actions to prevent pressure injuries were functional factors associated with all four psychological variables. Our findings can guide clinicians to focus on improving functional independence and activities of daily living during the management of persons with SCI to prevent psychological consequences. Developing devices that aid in improving functional independence is crucial and may improve psychological problems in such individuals.


Subject(s)
Activities of Daily Living , Spinal Cord Injuries , Humans , Retrospective Studies , Disability Evaluation , Reproducibility of Results
2.
J Food Prot ; 84(4): 674-679, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33270864

ABSTRACT

ABSTRACT: Outbreaks and recalls associated with microbial contamination of powdered foods have raised concern for the safety of the spray-drying process and its products. However, little research on the fate of bacteria during the spray-drying process has been done, leaving much unknown about the risks of contamination in spray dryers. Therefore, quantifying the contamination levels of Salmonella and Enterococcus faecium (as a surrogate) in various locations within a pilot-scale spray dryer can help illustrate the distribution of bacterial contamination, including in the final product. A 10% (w/w) dispersion of water and soy protein isolate was mixed with tryptic soy broth containing yeast extract inoculated with Salmonella enterica serovar Enteritidis phage type 30 (PT30) or E. faecium strain NRRL B-2354. This dispersion was spray dried using a pilot-scale tall-form cocurrent spray dryer at an inlet air temperature of 180, 200, or 220°C. After drying, samples of powder from eight locations within the system were collected or surface swabbed, plated, and enumerated. Spray drying achieved 2.40 to 4.15 and 2.33 to 2.83 log reductions in the concentrations of Salmonella and E. faecium, respectively, in the final powder product accumulated in the dryer's collectors. Salmonella and E. faecium were found in various concentrations in all locations within the spray dryer after a complete drying cycle. Differences in inlet air temperature between 180 and 220°C had no significant effect on the inactivation levels. As a surrogate, E. faecium was more resistant to spray drying than Salmonella. Overall, spray drying is capable of significant bacterial reduction in the final powder product, which can be combined with other hurdle technologies. However, adequate cleaning and sanitization procedures must be taken into consideration to prevent cross-contamination.


Subject(s)
Enterococcus faecium , Colony Count, Microbial , Food Microbiology , Soybean Proteins , Spray Drying
3.
J Food Prot ; 82(8): 1405-1411, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31335188

ABSTRACT

Recent outbreaks and recalls of low-moisture foods contaminated with Salmonella have been recognized as a major public health risk that demands the development of new Salmonella mitigation strategies and technologies. This study aimed to assess the efficacy of X-ray irradiation for inactivating Salmonella on or in almonds (kernels, meal, butter), dates (whole fruit, paste), and wheat (kernels, flour) at various water activities (aw) and storage periods. The raw materials were inoculated with Salmonella Enteritidis PT30, conditioned to 0.25, 0.45, and 0.65 aw in a humidity-controlled chamber, processed to various fabricated products, and reconditioned to the desired aw before treatment. In a storage study, inoculated almond kernels were stored in sealed tin cans for 7, 15, 27, and 103 weeks, irradiated with X ray (0.5 to 11 kGy, targeting up to a ∼2.5-log reduction) at the end of each storage period, and plated for Salmonella survivors to determine the efficacy of irradiation in terms of D10-value (dose required to reduce 90% of the population). Salmonella was least resistant (D10-value = 0.378 kGy) on the surface of almond kernels at 0.25 aw and most resistant (D10-value = 2.34 kGy) on the surface of dates at 0.45 aw. The Salmonella D10-value was 61% lower in date paste than on whole date fruit. Storage of almonds generally had no effect on the irradiation resistance of Salmonella over 103 weeks. Overall, these results indicate that product structure (whole, meals, powder, or paste), water activity (0.25 to 0.65 aw), and storage period (0 to 103 weeks) should be considered when determining the efficacy of X-ray irradiation for inactivating Salmonella in various low-water-activity foods.


Subject(s)
Food Handling , Food Irradiation , Food Microbiology , Salmonella enteritidis , Colony Count, Microbial , Food Handling/standards , Food Irradiation/standards , Food Microbiology/methods , Food Microbiology/standards , Microbial Viability/radiation effects , Salmonella enteritidis/radiation effects , Water/chemistry , X-Rays
4.
J Food Prot ; 82(2): 287-300, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30682265

ABSTRACT

Temperature is arguably the most important factor affecting microbial proliferation in fresh-cut produce. In this study, growth of Listeria monocytogenes in diced onions and celery and Salmonella Typhimurium in diced tomatoes was determined in modified atmosphere packages and snap-fit containers using three fluctuating temperature scenarios for transport, retail storage, and display. As expected, L. monocytogenes growth in diced onions and celery varied depending on the extent of temperature abuse, with exposure to high and intermediate temperature-abuse scenarios generally being growth supportive. A Baranyi primary model with a square-root secondary model for maximum growth rate, and a linear model for maximum population density, were used to estimate Listeria growth under fluctuating temperature. Accuracy and acceptability of the model prediction were evaluated in terms of root mean square error (RMSE) and acceptable prediction zone (APZ), respectively. Overall, growth predictions for L. monocytogenes were more accurate for celery (RMSE, 0.28 to 0.47) than onions (RMSE, 0.42 to 1.53) under the fluctuating temperature scenarios tested. However, both predictions yielded APZ values that ranged from 82 to 100% for celery and 36 to 78% for onions. In contrast, Salmonella Typhimurium populations increased more than 1 log CFU/g in diced tomatoes under the three fluctuating temperature scenarios studied. Overall, these diced products packaged under a high-oxygen atmosphere showed decreased pathogen growth compared with product stored in a passive modified atmosphere. Findings from this study will be particularly useful in assessing the risk associated with consumption of diced celery, tomatoes, and onions and in designing effective packaging strategies to minimize pathogen growth in fresh-cut produce.


Subject(s)
Apium , Food Handling , Listeria monocytogenes/growth & development , Onions , Salmonella typhimurium/growth & development , Solanum lycopersicum , Apium/microbiology , Colony Count, Microbial , Food Microbiology , Solanum lycopersicum/microbiology , Onions/microbiology , Temperature
5.
J Food Prot ; 80(1): 169-176, 2017 01.
Article in English | MEDLINE | ID: mdl-28221874

ABSTRACT

Ongoing regulatory changes are increasing the need for reliable process validation methods for pathogen reduction processes involving low-moisture products; however, the reliability of various validation methods has not been evaluated. Therefore, the objective was to quantify accuracy and repeatability of four validation methods (two biologically based and two based on time-temperature models) for thermal pasteurization of almonds. Almond kernels were inoculated with Salmonella Enteritidis phage type 30 or Enterococcus faecium (NRRL B-2354) at ~108 CFU/g, equilibrated to 0.24, 0.45, 0.58, or 0.78 water activity (aw), and then heated in a pilot-scale, moist-air impingement oven (dry bulb 121, 149, or 177°C; dew point <33.0, 69.4, 81.6, or 90.6°C; vair = 2.7 m/s) to a target lethality of ~4 log. Almond surface temperatures were measured in two ways, and those temperatures were used to calculate Salmonella inactivation using a traditional (D, z) model and a modified model accounting for process humidity. Among the process validation methods, both methods based on time-temperature models had better repeatability, with replication errors approximately half those of the surrogate ( E. faecium ). Additionally, the modified model yielded the lowest root mean squared error in predicting Salmonella inactivation (1.1 to 1.5 log CFU/g); in contrast, E. faecium yielded a root mean squared error of 1.2 to 1.6 log CFU/g, and the traditional model yielded an unacceptably high error (3.4 to 4.4 log CFU/g). Importantly, the surrogate and modified model both yielded lethality predictions that were statistically equivalent (α = 0.05) to actual Salmonella lethality. The results demonstrate the importance of methodology, aw, and process humidity when validating thermal pasteurization processes for low-moisture foods, which should help processors select and interpret validation methods to ensure product safety.


Subject(s)
Food Handling , Prunus dulcis , Colony Count, Microbial , Food Contamination , Food Microbiology , Reproducibility of Results , Salmonella , Temperature
6.
J Food Prot ; 77(2): 197-206, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24490913

ABSTRACT

Temperature abuse during commercial transport and retail sale of leafy greens negatively impacts both microbial safety and product quality. Consequently, the effect of fluctuating temperatures on Escherichia coli O157:H7 and Listeria monocytogenes growth in commercially-bagged salad greens was assessed during transport, retail storage, and display. Over a 16-month period, a series of time-temperature profiles for bagged salads were obtained from five transportation routes covering four geographic regions (432 profiles), as well as during retail storage (4,867 profiles) and display (3,799 profiles). Five different time-temperature profiles collected during 2 to 3 days of transport, 1 and 3 days of retail storage, and 3 days of retail display were then duplicated in a programmable incubator to assess E. coli O157:H7 and L. monocytogenes growth in commercial bags of romaine lettuce mix. Microbial growth predictions using the Koseki-Isobe and McKellar-Delaquis models were validated by comparing the root mean square error (RMSE), bias, and the acceptable prediction zone between the laboratory growth data and model predictions. Monte Carlo simulations were performed to calculate the probability distribution of microbial growth from 8,122,127,472 scenarios during transport, cold room storage, and retail display. Using inoculated bags of retail salad, E. coli O157:H7 and L. monocytogenes populations increased a maximum of 3.1 and 3.0 log CFU/g at retail storage. Both models yielded acceptable RMSEs and biases within the acceptable prediction zone for E. coli O157:H7. Based on the simulation, both pathogens generally increased <2 log CFU/g during transport, storage, and display. However, retail storage duration can significantly impact pathogen growth. This large-scale U.S. study-the first using commercial time/temperature profiles to assess the microbial risk of leafy greens-should be useful in filling some of the data gaps in current risk assessments for leafy greens.


Subject(s)
Escherichia coli O157/growth & development , Food Contamination/analysis , Food Handling/methods , Food Preservation/methods , Lactuca/microbiology , Listeria monocytogenes/growth & development , Colony Count, Microbial , Food Microbiology , Food Safety , Humans , Monte Carlo Method , Temperature
7.
Int J Food Microbiol ; 153(3): 365-71, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22189022

ABSTRACT

The overall goal of this study was to develop a set of process design principles for low-energy X-ray irradiation of tree nuts. Almonds and walnuts were inoculated with Salmonella Enteritidis PT30 and Salmonella Tennessee, and conditioned to four different water activities (0.23, 0.45, 0.64, and 0.84 a(w)). Thereafter, the inoculated/conditioned samples were irradiated to achieve up to a 5-log reduction in Salmonella using a pilot scale low-energy X-ray food irradiator. Greater efficacy (D(10)-value: the dose required to eliminate 90% of the microbial population) for inactivating SE PT30 and S. Tennessee was seen on the surface of almonds (0.226-0.431 kGy) than on walnuts (0.474-0.930 kGy) at all water activities. Also, the efficacy did not change monotonically with water activity. Overall, no significant difference (P>0.05) in sensory characteristics was seen between non-irradiated almonds and those irradiated to achieve a 5 log reduction in Salmonella. However, irradiating walnuts to the dose corresponding to a 5 log reduction caused a perceivable change in flavor. Post-irradiation storage tests revealed that surviving bacterial counts did not change over 120 days, regardless of nut type, Salmonella serovar, and a(w). Therefore, low-energy X-ray irradiation technology appears to be a promising non-thermal pasteurization strategy for certain types of nuts.


Subject(s)
Food Irradiation , Juglans/microbiology , Prunus/microbiology , Salmonella enteritidis/radiation effects , Colony Count, Microbial , Food Handling , Food Microbiology , Nuts , Salmonella/radiation effects , Salmonella Food Poisoning , Salmonella Infections , Taste , Water , X-Rays
8.
Annu Rev Food Sci Technol ; 3: 493-510, 2012.
Article in English | MEDLINE | ID: mdl-22149074

ABSTRACT

First recognized in 1895, X-ray irradiation soon became a breakthrough diagnostic tool for the dental and medical professions. However, the food industry remained slow to adopt X-ray irradiation as a means for controlling insects and microbial contaminants in food, instead using gamma and electron beam (E-beam) irradiation. However, the reinvention of X-ray machines with increased efficiency, combined with recent developments in legislation and engineering, is now allowing X-ray to actively compete with gamma irradiation and E-beam as a microbial reduction strategy for foods. This review summarizes the historical developments of X-rays and discusses the key technological advances over the past two decades that now have led to the development of several different X-ray irradiators capable of enhancing the safety and shelf life of many heat-sensitive products, including lettuce, spinach, tomatoes, and raw almonds, all of which have been linked to high profile outbreaks of foodborne illness.


Subject(s)
Food Irradiation , Food Microbiology , Foodborne Diseases/prevention & control , Animals , Consumer Behavior , Food Irradiation/methods , Humans , X-Rays
9.
J Food Prot ; 74(4): 603-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21477474

ABSTRACT

Pediococcus sp. NRRL B-2354 was investigated as a potential nonpathogenic surrogate for Salmonella enterica serovar Enteritidis phage type 30 (SE PT30) on the surface of almonds subjected to moist-air heating. Both microorganisms were subjected to various time, temperature, and humidity regimens on almonds processed in a computer-controlled, laboratory-scale, moist-air convection oven. Overall, the mean log reductions for Pediococcus sp. were 0.6 log and 1.4 log lower than those for SE PT30 (P < 0.05) at predicted reductions of 3 and 5 log, respectively. Also, the D(ref)-values for Pediococcus sp., calculated using a modified inactivation model (accounting for moisture) for SE PT30 on the surface of almonds subjected to moist-air heating (30 to 90% moisture by volume) were ~30% larger than those for SE PT30. Based on these findings, Pediococcus sp. NRRL B-2354 can be used as a conservative surrogate for SE PT30 during moist-air heating, and this organism is also likely to be an acceptable surrogate for steam heating.


Subject(s)
Convection , Food Contamination/analysis , Pediococcus/growth & development , Prunus/microbiology , Salmonella enteritidis/growth & development , Air , Colony Count, Microbial , Consumer Product Safety , Food Handling/methods , Food Microbiology , Humans , Kinetics , Models, Biological , Temperature , Time Factors , Water/metabolism
10.
J Food Prot ; 73(3): 547-51, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20202343

ABSTRACT

Low-energy X-ray irradiation was assessed as a means of eliminating Escherichia coli O157:H7 on lettuce. Round-cut iceberg lettuce samples (2.54-cm diameter) were dip or spot inoculated with a three-strain cocktail of E. coli O157:H7, stored for 24 h at 4 degrees C, and then irradiated at four dose levels up to 0.25 kGy using a prototype low-energy (70 kV) X-ray irradiator. E. coli O157:H7 survivors were quantified by plating on sorbitol MacConkey agar containing cefixime and tellurite. Dip inoculation yielded a D(10)-value of 0.040 +/- 0.001 kGy, which is 3.4 times lower than a previously reported value of 0.136 kGy using gamma radiation. The D(10)-value for E. coli O157:H7 on spot-inoculated samples was 0.078 +/- 0.008 kGy, which is about twice that of dip-inoculated samples. When 10 stacked leaves were irradiated from both sides, a dose of 0.2 kGy was achieved at the center of the stack with a surface dose of 1 kGy, corresponding to a approximately 5-log reduction of E. coli O157:H7 at the center of the stack. Based on these findings, low-energy X-ray irradiation appears to be a promising microbial inactivation strategy for leafy greens and potentially for other types of fresh produce.


Subject(s)
Escherichia coli O157/radiation effects , Food Irradiation , Lactuca/microbiology , Colony Count, Microbial , Dose-Response Relationship, Radiation , Escherichia coli O157/growth & development , Food Microbiology , Humans , Temperature , Time Factors , X-Rays
11.
J Food Prot ; 72(8): 1602-9, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19722390

ABSTRACT

A traditional thermal inactivation kinetic model (D- and z-value) was modified to account for the effect of process humidity on thermal inactivation of Salmonella Enteritidis PT30 on the surface of almonds subjected to moist-air heating. Raw almonds were surface inoculated to approximately 10(8) CFU/g and subjected to moist-air heating in a computer-controlled laboratory-scale convection oven. Time-temperature data were collected for 125 conditions (five dry bulb temperatures, 121 to 232 degrees C; five process humidity levels, 5 to 90% moisture by volume; and five process durations). Moisture status at the surface of the almond, rather than the humidity of the bulk air, was a primary factor controlling the rate of inactivation; therefore, the D-value could not be a simple function of process temperature. Instead, the traditional D- and z-value model was modified to account for the dynamic water status at the surface of the product under humid heating conditions. The modified model needs only the dew point temperature of the processing air and dynamic surface temperature history of the almonds during moist-air heating. The modified model was more robust and accurate than the traditional model. The accuracy of the modified model was improved by 32 to 44% (in terms of the root mean squared error [RMSE] for the model fit) when compared with the traditional model in all moist-air heating conditions. Also, the prediction error of the modified model (RMSE = 1.33 log reductions) against an independent validation data set was approximately one-half that of the traditional model (RMSE = 2.56 log reduction) in the humidity range of 5 to 90% moisture by volume.


Subject(s)
Food Contamination/analysis , Hot Temperature , Models, Biological , Prunus/microbiology , Salmonella enteritidis/growth & development , Air , Colony Count, Microbial , Consumer Product Safety , Convection , Food Handling/methods , Food Microbiology , Humans , Humidity , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...