Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(3): 3782-3792, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33461292

ABSTRACT

Metal organic frameworks (MOFs) have been suggested as promising materials for application in the degradation of chemical warfare agents, with the majority of studies to date focusing on nerve agents. One of the most prominent MOFs used in the detoxification of nerve agents is UiO-66, which is of interest as a future nerve agent decontaminant. However, blister agents, which constitute one of the most toxic and highly reactive categories of chemical agents, are yet to be examined as gas-phase decontamination targets using MOF structures. In this study, a novel type of UiO-66 with a smaller particle size, namely, UiO-66S, was used as a decontaminant for the blister agent simulant, 2-chloroethyl ethyl sulfide (2-CEES). The gas-phase chemical adsorption and decomposition of 2-CEES were demonstrated for the first time, with an estimated t1/2 of 1.34 h. This value is the highest reported value for an MOF in gas-phase reaction conditions. The obtained nontoxic degradation products were identified, and the reaction mechanism was studied using density functional theory calculations. Furthermore, the synthesized UiO-66S catalyst also exhibits superior catalytic ability toward nerve agent simulants (diisopropyl fluorophosphate).The results of the study provide a firm basis for the use of UiO-66S as a future decontaminant for both nerve and blister agents.

2.
Water Res ; 80: 267-80, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26005787

ABSTRACT

Salt used to make brines for regeneration of ion exchange (IX) resins is the dominant economic and environmental liability of IX treatment systems for nitrate-contaminated drinking water sources. To reduce salt usage, the applicability and environmental benefits of using a catalytic reduction technology to treat nitrate in spent IX brines and enable their reuse for IX resin regeneration were evaluated. Hybrid IX/catalyst systems were designed and life cycle assessment of process consumables are used to set performance targets for the catalyst reactor. Nitrate reduction was measured in a typical spent brine (i.e., 5000 mg/L NO3(-) and 70,000 mg/L NaCl) using bimetallic Pd-In hydrogenation catalysts with variable Pd (0.2-2.5 wt%) and In (0.0125-0.25 wt%) loadings on pelletized activated carbon support (Pd-In/C). The highest activity of 50 mgNO3(-)/(min - g(Pd)) was obtained with a 0.5 wt%Pd-0.1 wt%In/C catalyst. Catalyst longevity was demonstrated by observing no decrease in catalyst activity over more than 60 days in a packed-bed reactor. Based on catalyst activity measured in batch and packed-bed reactors, environmental impacts of hybrid IX/catalyst systems were evaluated for both sequencing-batch and continuous-flow packed-bed reactor designs and environmental impacts of the sequencing-batch hybrid system were found to be 38-81% of those of conventional IX. Major environmental impact contributors other than salt consumption include Pd metal, hydrogen (electron donor), and carbon dioxide (pH buffer). Sensitivity of environmental impacts of the sequencing-batch hybrid reactor system to sulfate and bicarbonate anions indicate the hybrid system is more sustainable than conventional IX when influent water contains <80 mg/L sulfate (at any bicarbonate level up to 100 mg/L) or <20 mg/L bicarbonate (at any sulfate level up to 100 mg/L) assuming 15 brine reuse cycles. The study showed that hybrid IX/catalyst reactor systems have potential to reduce resource consumption and improve environmental impacts associated with treating nitrate-contaminated water sources.


Subject(s)
Nitrates/chemistry , Salts/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Algorithms , Bicarbonates/chemistry , Bicarbonates/metabolism , Bioreactors , Carbon Dioxide/chemistry , Carbon Dioxide/metabolism , Catalysis , Hydrogen/chemistry , Hydrogen/metabolism , Hydrogen-Ion Concentration , Ion Exchange , Models, Chemical , Nitrates/metabolism , Recycling , Reproducibility of Results , Salts/metabolism , Sodium Chloride/chemistry , Sodium Chloride/metabolism , Sulfates/chemistry , Sulfates/metabolism , Water Pollutants, Chemical/metabolism , Water Purification/instrumentation
3.
Environ Sci Technol ; 42(5): 1458-64, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-18441788

ABSTRACT

The identification and characterization of carbonaceous materials (CMs) that control hydrophobic organic chemical (HOC) sorption is essential to predict the fate and transport of HOCs in soils and sediments. The objectives of this paper are to determine the types of CMs that control HOC sorption in the oxidized and reduced zones of a glacially deposited groundwater sediment in central Illinois, with a special emphasis on the roles of kerogen and black carbon. After collection, the sediments were treated to obtain fractions of the sediment samples enriched in different types of CMs (e.g., humic acid, kerogen, black carbon), and selected fractions were subject to quantitative petrographic analysis. The original sediments and their enrichment fractions were evaluated for their ability to sorb trichloroethene (TCE), a common groundwater pollutant. Isotherm results and mass fractions of CM enrichments were used to calculate sorption contributions of different CMs. The results indicate that CMs in the heavy fractions dominate sorption because of their greater mass. Black carbon mass fractions of total CMs in the reduced sediments were calculated and used to estimate the sorption contribution of these materials. Results indicate that in the reduced sediments, black carbon may sequester as much as 32% of the sorbed TCE mass, butthat kerogen and humin are the dominant sorption environments. Organic carbon normalized sorption coefficients (K(oc)) were compared to literature values. Values for the central Illinois sediments are relatively large and in the range of values determined for materials high in kerogen and humin. This work demonstrates the advantage of using both sequential chemical treatment and petrographic analysis to analyze the sorption contributions of different CMs in natural soils and sediments, and the importance of sorption to natural geopolymers in groundwater sediments not impacted by anthropogenic sources of black carbon.


Subject(s)
Carbon/chemistry , Geologic Sediments/chemistry , Organic Chemicals/chemistry , Soil Pollutants/chemistry , Adsorption
4.
Environ Sci Technol ; 39(9): 3279-88, 2005 May 01.
Article in English | MEDLINE | ID: mdl-15926579

ABSTRACT

To better understand sorption, separation methods are needed to enrich soils and sediments in one or more types of carbonaceous materials (CM), especially in fine grain materials where physical separation is not possible. We evaluated a series of chemical and thermal treatment methods by applying them to four different CMs prepared in our laboratory: a humic acid (HA), a char, a soot, and a heat-treated soot (HN-soot). Before and after each treatment step, CM properties were evaluated including aqueous phase sorption with trichloroethene (TCE). Results indicate that treatment with hydrofluoric (HF) and hydrochloric acid (HCI) to remove silicate minerals, and with trifluoroacetic acid (TFA) to remove easily hydrolyzable organic matter, has relatively little effect on the humic acid mass (<19% change) and TCE sorption to this material. Subsequent treatment with NaOH to extract fulvic and humic acids results in almost complete removal of the humic acid mass (>92%) and has little to no effect on the masses of the char and two soots (<8% change) and TCE sorption to these materials. Treatment with acid dichromate to remove kerogen and humin also has little effect on masses of the char and soots (<16% change), but TCE sorption to these materials is significantly altered (by >10x in some cases), and there is strong evidence of surface oxidation based on X-ray photoelectron and diffuse reflectance Fourier transform infrared spectroscopy results. The last step, thermal treatment, which targets char removal, also destroys >96% of the soots pretreated with acid dichromate. However, when thermal treatment is applied to the original soots, <32% of these materials are destroyed. Thermal oxidation also affects sorption to one of the soots (by approximately 2x at low concentration), and surface oxidation is evident. These results suggest that treatment with HCl, HCl/HF, TFA, and NaOH can be applied to soils and sediments to obtain CM enrichment fractions for sorption evaluation, but that acid dichromate and heat treatment may not be appropriate for these purposes.


Subject(s)
Carbon/chemistry , Environmental Pollutants/isolation & purification , Adsorption , Organic Chemicals/isolation & purification , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL