Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxics ; 12(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38668501

ABSTRACT

A significant quantity of biologically produced sulfur (BPS) is generated as a by-product of chemical and biological desulfurization processes applied to landfill gas treatment. The beneficial upcycling of BPS has seen limited use in the environmental context. The effectiveness and underlying mechanism of BPS as an adsorbent for removing Hg2+ from both solution and wastewater were elucidated based on experiments encompassing surface characterization, adsorption isotherms, kinetics, and thermodynamics. The BPS exhibited remarkable efficacy in removing Hg2+ from solution, with the Langmuir model accurately describing the adsorption process and showing a maximum adsorption capacity of 244 mg g-1. Surface analysis through X-ray photoelectron spectroscopy and scanning electron microscopy revealed that Hg2+ complexed with sulfide on BPS surfaces, forming stable HgS. The adsorbed Hg was strongly retained in BPS, with less than 0.2% of the adsorbed Hg desorbed by strong acids. Adsorption kinetics followed the double-exponential first-order model, showing an initial rapid adsorption phase wherein 75% of the initial Hg2+ was removed within 5 min, followed by a slower adsorption rate. The thermodynamic parameters suggested that adsorption of Hg2+ by BPS was a spontaneous and endothermic process. Additionally, BPS effectively removed Hg2+ from wastewater, showing preference for Hg over other co-existing metals. These findings underscore the potential of BPS as an effective adsorbent for Hg2+ removal from wastewater.

2.
Environ Sci Pollut Res Int ; 31(15): 22802-22813, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38411914

ABSTRACT

The alginate-biochar formulation for metal removal from aquatic environments has been widely tried but its use for lowering phytoavailability of metals in the soil-crop continuum is limited. Biochar has been increasingly used as a soil amendment due to its potential for soil carbon sequestration and sorption capacity. Handling of powdery biochar as a soil top-dressing material is, however, cumbersome and vulnerable to loss by water and wind. In this experiment, biochar powder, which was pyrolyzed from oak trees, was encapsulated into beads with alginate, which is a naturally occurring polysaccharide found in brown algae. Both batch and pot experiments were conducted to examine the effects of the alginate-encapsulated biochar beads (BB), as compared to its original biochar powdery form (BP), on the Pb adsorption capacity and phytoavailability of soil Pb to lettuce (Lactuca sativa L.). The BB treatment improved reactivity about six times due to a higher surface area (287 m2 g-1) and five times due to a higher cation exchange capacity (50 cmolc kg-1) as compared to the BP treatment. The maximum sorption capacity of Pb was increased to 152 from 81 mg g-1 because of surface chemosorption. Adsorption of Pb onto BB followed multiple first-order kinetics and comprised fast and slow steps. More than 60% of the Pb was adsorbed in the fast step, i.e., within 3 h. Also, the BB treatment, up to the 5% level (w/w), increased soil pH from 5.4 to 6.5 and lowered the phytoavailable fraction of Pb in soil from 5.7 to 0.3 mg kg-1. The Pb concentrations in lettuce cultivated at 5% for the BP and BB treatments were similar but 63 and 66% lower, respectively, than those of the control soil. The results showed that the encapsulation of biochar with alginate enhanced adsorption by the biochar.


Subject(s)
Lactuca , Soil Pollutants , Lead , Soil , Alginates , Soil Pollutants/analysis , Charcoal
3.
Toxics ; 10(4)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35448423

ABSTRACT

Anionic surfactants (AS) are becoming a major emerging contaminant of waters due to their widespread use in household and industrial products. The standard chloroform method for analysis of AS in water relies on chloroform extraction of a methylene blue active substance (MBAS), which contains ion pairs between methylene blue (MB) molecules (positively charged) and AS. Due to the poor extractability of chloroform, the procedure is complicated, time-consuming, and subject to anionic interferences. A mixture of methyl isobutyl ketone (MIBK)-1,2-dichloroethane (DCE) at a 3:1 ratio of MIBK:DCE proved to be a robust solvent for AS extraction for a wide range of samples under various chemical conditions. The objectives of this research were to set the washing protocol to eliminate the anionic interferences in the MIBK-DCE extraction and to develop a new simplified analytical method for AS analysis using the MIBK-DCE (3:1) extractant. The suitability of the proposed MIBK-DCE method was validated based on quality control and assurance criteria, such as selectivity, accuracy, precision, method detection limit (MDL), limit of quantification (LOQ), and sensitivity. Various water samples, such as freshwater, wastewater, and seawater, were used for the method development and validation. Interferences by inorganic and organic anions were evident in the reference chloroform method but were eliminated in the MIBK-DCE procedure with a two-step process that consisted of washing with a carbonate/bicarbonate solution at pH 9.2 and a mixture of silver sulfate (Ag2SO4) and potassium alum (AlK(SO4)2). The simplified MIBK-DCE method for sodium dodecyl sulfate (SDS) analysis consisted of (i) sample pre-treatment, (ii) MIBK-DCE extraction, (iii) washing and filtration, and (iv) absorbance measurement. The MIBK-DCE method was accurate, precise, selective, and sensitive for AS analysis and showed MDL of 0.0001 mg/L, LOQ of 0.0005 mg/L, relative standard deviation (RSD) of 0.1%, and recovery of 99.0%. All these criteria were superior to those of the chloroform method. Sensitivity analysis showed highly significant correlations in AS analyses between the MIBK-DCE and chloroform methods for domestic wastewater, industrial wastewater, and seawater. The MIBK-DCE method is simple, rapid, robust, reproducible, and convenient, when compared to the chloroform method. Results demonstrate that the simplified MIBK-DCE method can be employed for AS analysis in a wide range of environmental waters including seawater.

4.
J Hazard Mater ; 419: 126470, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34216960

ABSTRACT

Biological desulfurization processes of landfill gas yield an enormous amount of biologically produced S (BPS) as a byproduct. Capability of BPS to remove Cd2+ from aqueous solutions was tested and its removal efficiency was compared to that of granular activated carbon (GAC). Kinetics of Cd2+ removal by BPS was a two-stage process with an initial rapid adsorption showing 45% of initial Cd2+ was removed within 5 min, followed by a slower adsorption. Cadmium adsorption onto the BPS fitted the Langmuir isotherm model and maximum adsorption capacity of the BPS (63.3 mg g-1) was 1.8 times higher than that of GAC (36.1 mg g-1). Thermodynamic parameters showed that Cd2+ adsorption by BPS was favorable and endothermic. Data from XPS proved the main adsorption mechanism to be complexation of Cd2+ with sulfides in the BPS. Results demonstrated that BPS can be recycled as a novel adsorbent for Cd2+ removal from wastewater.


Subject(s)
Cadmium , Water Pollutants, Chemical , Adsorption , Cadmium/analysis , Charcoal , Hydrogen-Ion Concentration , Kinetics , Solutions , Sulfur , Thermodynamics , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...