Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 11(10)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37893241

ABSTRACT

Endometriosis, which is the presence of endometrial stroma and glands outside the uterus, is one of the most frequently diagnosed gynecologic diseases in reproductive women. Patients with endometriosis suffer from various pain symptoms such as dysmenorrhea, dyspareunia, and chronic pelvic pain. The pathophysiology for chronic pain in patients with endometriosis has not been fully understood. Altered inflammatory responses have been shown to contribute to pain symptoms. Increased secretion of cytokines, angiogenic factors, and nerve growth factors has been suggested to increase pain. Also, altered distribution of nerve fibers may also contribute to chronic pain. Aside from local contributing factors, sensitization of the nervous system is also important in understanding persistent pain in endometriosis. Peripheral sensitization as well as central sensitization have been identified in patients with endometriosis. These sensitizations of the nervous system can also explain increased incidence of comorbidities related to pain such as irritable bowel disease, bladder pain syndrome, and vulvodynia in patients with endometriosis. In conclusion, there are various possible mechanisms behind pain in patients with endometriosis, and understanding these mechanisms can help clinicians understand the nature of the pain symptoms and decide on treatments for endometriosis-related pain symptoms.

2.
Bioresour Technol ; 219: 357-364, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27501032

ABSTRACT

In this study, palm residues were pyrolyzed in a bench-scale (3kg/h) fast pyrolysis plant equipped with a fluidized bed reactor and bio-oil separation system for the production of bio-oil rich in acetic acid and phenol. Pyrolysis experiments were performed to investigate the effects of reaction temperature and the types and amounts of activated carbon on the bio-oil composition. The maximum bio-oil yield obtained was approximately 47wt% at a reaction temperature of 515°C. The main compounds produced from the bio-oils were acetic acid, hydroxyacetone, phenol, and phenolic compounds such as cresol, xylenol, and pyrocatechol. When coal-derived activated carbon was applied, the acetic acid and phenol yields in the bio-oils reached 21 and 19wt%, respectively. Finally, bio-oils rich in acetic acid and phenol could be produced separately by using an in situ bio-oil separation system and activated carbon as an additive.


Subject(s)
Acetic Acid , Biofuels , Phenols , Acetic Acid/analysis , Acetic Acid/chemistry , Acetic Acid/metabolism , Charcoal , Hot Temperature , Phenols/analysis , Phenols/chemistry , Phenols/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...