Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Metab ; 6(5): 847-860, 2024 May.
Article in English | MEDLINE | ID: mdl-38811804

ABSTRACT

Adipose tissues serve as an energy reservoir and endocrine organ, yet the mechanisms that coordinate these functions remain elusive. Here, we show that the transcriptional coregulators, YAP and TAZ, uncouple fat mass from leptin levels and regulate adipocyte plasticity to maintain metabolic homeostasis. Activating YAP/TAZ signalling in adipocytes by deletion of the upstream regulators Lats1 and Lats2 results in a profound reduction in fat mass by converting mature adipocytes into delipidated progenitor-like cells, but does not cause lipodystrophy-related metabolic dysfunction, due to a paradoxical increase in circulating leptin levels. Mechanistically, we demonstrate that YAP/TAZ-TEAD signalling upregulates leptin expression by directly binding to an upstream enhancer site of the leptin gene. We further show that YAP/TAZ activity is associated with, and functionally required for, leptin regulation during fasting and refeeding. These results suggest that adipocyte Hippo-YAP/TAZ signalling constitutes a nexus for coordinating adipose tissue lipid storage capacity and systemic energy balance through the regulation of adipocyte plasticity and leptin gene transcription.


Subject(s)
Adaptor Proteins, Signal Transducing , Adipocytes , Adipose Tissue , Energy Metabolism , Hippo Signaling Pathway , Leptin , Protein Serine-Threonine Kinases , Signal Transduction , YAP-Signaling Proteins , Animals , Leptin/metabolism , Protein Serine-Threonine Kinases/metabolism , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , YAP-Signaling Proteins/metabolism , Adipose Tissue/metabolism , Adipocytes/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Phosphoproteins/metabolism , Phosphoproteins/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Trans-Activators/metabolism , Trans-Activators/genetics
2.
bioRxiv ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38045303

ABSTRACT

Adipocytes have diverse roles in energy storage and metabolism, inflammation, and tissue repair. Mature adipocytes have been assumed to be terminally differentiated cells. However, recent evidence suggests that adipocytes retain substantial phenotypic plasticity, with potential to dedifferentiate into fibroblast-like cells under physiological and pathological conditions. Here, we develop a two-step lineage tracing approach based on the observation that fibroblasts express platelet-derived growth factor receptor alpha ( Pdgfra ) while adipocytes express Adiponectin ( Adipoq ) but not Pdgfra . Our approach specifically traces Pdgfra + cells that originate from Adipoq + adipocytes. We find many traced adipocytes and fibroblast-like cells surrounding skin wounds, but only a few traced cells localize to the wound center. In agreement with adipocyte plasticity, traced adipocytes incorporate EdU, downregulate Plin1 and PPARγ, and upregulate αSMA. We also investigate the role of potential dedifferentiation signals using constitutively active PDGFRα mutation, Pdgfra knockout, or Tgfbr2 knockout models. We find that PDGF and TGFß signaling both promote dedifferentiation, and PDGFRα does so independently of TGFßR2. These results demonstrate an intersectional genetic approach to trace the hybrid cell phenotype of Pdgfra + adipocytes, which may be important for wound repair, regeneration and fibrosis.

3.
Science ; 376(6590): eabf8271, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35420934

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) remain without effective therapies. The mechanistic target of rapamycin complex 1 (mTORC1) pathway is a potential therapeutic target, but conflicting interpretations have been proposed for how mTORC1 controls lipid homeostasis. We show that selective inhibition of mTORC1 signaling in mice, through deletion of the RagC/D guanosine triphosphatase-activating protein folliculin (FLCN), promotes activation of transcription factor E3 (TFE3) in the liver without affecting other mTORC1 targets and protects against NAFLD and NASH. Disease protection is mediated by TFE3, which both induces lipid consumption and suppresses anabolic lipogenesis. TFE3 inhibits lipogenesis by suppressing proteolytic processing and activation of sterol regulatory element-binding protein-1c (SREBP-1c) and by interacting with SREBP-1c on chromatin. Our data reconcile previously conflicting studies and identify selective inhibition of mTORC1 as a potential approach to treat NASH and NAFLD.


Subject(s)
Mechanistic Target of Rapamycin Complex 1 , Non-alcoholic Fatty Liver Disease , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Gene Deletion , Liver/metabolism , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Non-alcoholic Fatty Liver Disease/therapy , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism
4.
Sci Transl Med ; 13(618): eabd7287, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34731015

ABSTRACT

Truncating variants in TTN (TTNtvs) are the most common known cause of nonischemic dilated cardiomyopathy (DCM), but how TTNtvs cause disease has remained controversial. Efforts to detect truncated titin proteins in affected human DCM hearts have failed, suggesting that disease is caused by haploinsufficiency, but reduced amounts of titin protein have not yet been demonstrated. Here, we leveraged a collection of 184 explanted posttransplant DCM hearts to show, using specialized electrophoretic gels, Western blotting, allelic phasing, and unbiased proteomics, that truncated titin proteins can quantitatively be detected in human DCM hearts. The sizes of truncated proteins corresponded to that predicted by their respective TTNtvs; the truncated proteins were encoded by the TTNtv-bearing allele; and no degradation fragments from protein encoded by either allele were detectable. In parallel, full-length titin was less abundant in TTNtv+ than in TTNtv− DCM hearts. Disease severity or need for transplantation did not correlate with TTNtv location. Transcriptomic profiling revealed few differences in splicing or allelic imbalance of the TTN transcript between TTNtv+ and TTNtv− DCM hearts. Studies with isolated human adult cardiomyocytes revealed no defects in contractility in cells from TTNtv+ compared to TTNtv− DCM hearts. Together, these data demonstrate the presence of truncated titin protein in human TTNtv+ DCM, show reduced amounts of full-length titin protein in TTNtv+ DCM hearts, and support combined dominant-negative and haploinsufficiency contributions to disease.


Subject(s)
Cardiomyopathy, Dilated , Connectin , Adult , Alleles , Cardiomyopathy, Dilated/genetics , Connectin/genetics , Connectin/metabolism , Humans , Myocytes, Cardiac/metabolism
5.
Front Cardiovasc Med ; 7: 582407, 2020.
Article in English | MEDLINE | ID: mdl-33134326

ABSTRACT

Background: No medical therapies exist to treat right ventricular (RV) remodeling and RV failure (RVF), in large part because molecular pathways that are specifically activated in pathologic human RV remodeling remain poorly defined. Murine models have suggested involvement of Wnt signaling, but this has not been well-defined in human RVF. Methods: Using a candidate gene approach, we sought to identify genes specifically expressed in human pathologic RV remodeling by assessing the expression of 28 WNT-related genes in the RVs of three groups: explanted nonfailing donors (NF, n = 29), explanted dilated and ischemic cardiomyopathy, obtained at the time of cardiac transplantation, either with preserved RV function (pRV, n = 78) or with RVF (n = 35). Results: We identified the noncanonical WNT receptor ROR2 as transcriptionally strongly upregulated in RVF compared to pRV and NF (Benjamini-Hochberg adjusted P < 0.05). ROR2 protein expression correlated linearly to mRNA expression (R 2 = 0.41, P = 8.1 × 10-18) among all RVs, and to higher right atrial to pulmonary capillary wedge ratio in RVF (R 2 = 0.40, P = 3.0 × 10-5). Utilizing Masson's trichrome and ROR2 immunohistochemistry, we identified preferential ROR2 protein expression in fibrotic regions by both cardiomyocytes and noncardiomyocytes. We compared RVF with high and low ROR2 expression, and found that high ROR2 expression was associated with increased expression of the WNT5A/ROR2/Ca2+ responsive protease calpain-µ, cleavage of its target FLNA, and FLNA phosphorylation, another marker of activation downstream of ROR2. ROR2 protein expression as a continuous variable, correlated strongly to expression of calpain-µ (R 2 = 0.25), total FLNA (R 2 = 0.67), calpain cleaved FLNA (R 2 = 0.32) and FLNA phosphorylation (R 2 = 0.62, P < 0.05 for all). Conclusion: We demonstrate robust reactivation of a fetal WNT gene program, specifically its noncanonical arm, in human RVF characterized by activation of ROR2/calpain mediated cytoskeleton protein cleavage.

6.
Nat Commun ; 11(1): 519, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31980640

ABSTRACT

Fibroblastic reticular cells (FRCs) are immunologically specialized myofibroblasts of lymphoid organ, and FRC maturation is essential for structural and functional properties of lymph nodes (LNs). Here we show that YAP and TAZ (YAP/TAZ), the final effectors of Hippo signaling, regulate FRC commitment and maturation. Selective depletion of YAP/TAZ in FRCs impairs FRC growth and differentiation and compromises the structural organization of LNs, whereas hyperactivation of YAP/TAZ enhances myofibroblastic characteristics of FRCs and aggravates LN fibrosis. Mechanistically, the interaction between YAP/TAZ and p52 promotes chemokine expression that is required for commitment of FRC lineage prior to lymphotoxin-ß receptor (LTßR) engagement, whereas LTßR activation suppresses YAP/TAZ activity for FRC maturation. Our findings thus present YAP/TAZ as critical regulators of commitment and maturation of FRCs, and hold promise for better understanding of FRC-mediated pathophysiologic processes.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Cell Differentiation , Fibroblasts/metabolism , Lymph Nodes/cytology , Trans-Activators/metabolism , Adipocytes/metabolism , Animals , Chemokines/metabolism , Fibroblasts/ultrastructure , Lymph Nodes/ultrastructure , Lymphotoxin beta Receptor/metabolism , Mesoderm/metabolism , Mice, Inbred C57BL , Myofibroblasts/metabolism , YAP-Signaling Proteins
7.
BMB Rep ; 51(5): 209-210, 2018 May.
Article in English | MEDLINE | ID: mdl-29699606

ABSTRACT

NAFLD induces the development of advanced liver diseases such as NASH and liver cancer. Therefore, understanding the mechanism of NAFLD development is critical for its prevention and treatment. Ablation of PTEN or Hippo pathway components induces liver cancer in a murine model by hyperactive AKT or YAP/TAZ, respectively. Although the regulation of these two pathways occurs in the same hepatocyte, the details of crosstalk between Hippo-YAP/TAZ and PTEN-AKT pathways in liver homeostasis and tumorigenesis still remain unclear. Here, we found that depletion of both PTEN and SAV1 in liver promotes spontaneous NAFLD and liver cancer through hyperactive AKT via YAP/TAZmediated up-regulation of IRS2 transcription. Conversely, NAFLD is rescued by both ablation of YAP/TAZ and activation of the Hippo pathway. Furthermore, human HCC patients with NAFLD showed strong correlation between YAP/TAZ and IRS2 or phospho-AKT expression. Finally, the inhibition of AKT by MK-2206 treatment attenuates NAFLD development and tumorigenesis. Our findings indicate that Hippo pathway interacts with AKT signaling during the intervention with IRS2 to prevent NAFLD and liver cancer. [BMB Reports 2018; 51(5): 209-210].


Subject(s)
Insulin Receptor Substrate Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Animals , Humans , Mice , Models, Biological
8.
J Clin Invest ; 128(3): 1010-1025, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29400692

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a major risk factor for liver cancer; therefore, its prevention is an important clinical goal. Ablation of phosphatase and tensin homolog (PTEN) or the protein kinase Hippo signaling pathway induces liver cancer via activation of AKT or the transcriptional regulators YAP/TAZ, respectively; however, the potential for crosstalk between the PTEN/AKT and Hippo/YAP/TAZ pathways in liver tumorigenesis has thus far remained unclear. Here, we have shown that deletion of both PTEN and SAV1 in the liver accelerates the development of NAFLD and liver cancer in mice. At the molecular level, activation of YAP/TAZ in the liver of Pten-/- Sav1-/- mice amplified AKT signaling through the upregulation of insulin receptor substrate 2 (IRS2) expression. Both ablation of YAP/TAZ and activation of the Hippo pathway could rescue these phenotypes. A high level of YAP/ TAZ expression was associated with a high level of IRS2 expression in human hepatocellular carcinoma (HCC). Moreover, treatment with the AKT inhibitor MK-2206 or knockout of IRS2 by AAV-Cas9 successfully repressed liver tumorigenesis in Pten-/- Sav1-/- mice. Thus, our findings suggest that Hippo signaling interacts with AKT signaling by regulating IRS2 expression to prevent NAFLD and liver cancer progression and provide evidence that impaired crosstalk between these 2 pathways accelerates NAFLD and liver cancer.


Subject(s)
Fatty Liver/metabolism , Insulin Receptor Substrate Proteins/metabolism , Liver Neoplasms/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Carcinoma, Hepatocellular/metabolism , Cell Cycle Proteins/metabolism , Disease Progression , Gene Deletion , Gene Expression Regulation, Neoplastic , Hippo Signaling Pathway , Humans , Male , Mice , Mice, Knockout , PTEN Phosphohydrolase/metabolism , Signal Transduction , Transcription, Genetic
9.
Exp Mol Med ; 41(12): 912-8, 2009 Dec 31.
Article in English | MEDLINE | ID: mdl-19745602

ABSTRACT

To screen the differentially expressed microRNAs related to radio-resistance, we compared the microRNA profiles of lung cancer cells with different responses to ionizing radiation (IR). Of 328 microRNAs in microarray, 27 microRNAs were differentially expressed in NCI-H460 (H460) and NCI-H1299 (H1299) cells. Among them, let-7g was down-regulated in radio-resistant H1299 cells, and the level of let-7g was higher in radio-sensitive cells like Caski, H460, and ME180 in qRT-PCR analysis than in radio-resistant cells like A549, H1299, DLD1, and HeLa. Over-expression of let-7g in H1299 cells could suppress the translation of KRAS, and increase the sensitivity to IR. When we knockdown the expression of LIN28B, an upstream regulator of let-7g, the level of mature let-7g was increased in H1299 cells and the sensitivity to IR was also enhanced in LIN28B knockdown cells. From these data, we suggest that LIN28B plays an important role in radiation responses of lung cancer cells through inhibiting let-7g processing and increasing translation of KRAS.


Subject(s)
DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , MicroRNAs/genetics , Proto-Oncogene Proteins/genetics , Radiation Tolerance , ras Proteins/genetics , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Gene Expression Profiling , Humans , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins p21(ras) , RNA-Binding Proteins , ras Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...