Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Dev Comp Immunol ; 157: 105182, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38636700

ABSTRACT

Galectin 8 belongs to the tandem repeat subclass of the galectin superfamily. It possesses two homologous carbohydrate recognition domains linked by a short peptide and preferentially binds to ß-galactoside-containing glycol-conjugates in a calcium-independent manner. This study identified Galectin-8-like isoform X1 (PhGal8X1) from red-lip mullet (Planiliza haematocheilus) and investigated its role in regulating fish immunity. The open reading frame of PhGal8X1 was 918bp, encoding a soluble protein of 305 amino acids. The protein had a theoretical isoelectric (pI) point of 7.7 and an estimated molecular weight of 34.078 kDa. PhGal8X1 was expressed in various tissues of the fish, with prominent levels in the brain, stomach, and intestine. PhGal8X1 expression was significantly (p < 0.05) induced in the blood and spleen upon challenge with different immune stimuli, including polyinosinic:polycytidylic acid, lipopolysaccharide, and Lactococcus garvieae. The recombinant PhGal8X1 protein demonstrated agglutination activity towards various bacterial pathogens at a minimum effective concentration of 50 µg/mL or 100 µg/mL. Subcellular localization observations revealed that PhGal8X1 was primarily localized in the cytoplasm. PhGal8X1 overexpression in fathead minnow cells significantly (p < 0.05) inhibited viral hemorrhagic septicemia virus (VHSV) replication. The expression levels of four proinflammatory cytokines and two chemokines were significantly (p < 0.05) upregulated in PhGal8X1 overexpressing cells in response to VHSV infection. Furthermore, overexpression of PhGal8X1 exhibited protective effects against oxidative stress induced by H2O2 through the upregulation of antioxidant enzymes. Taken together, these findings provide compelling evidence that PhGal8X1 plays a crucial role in enhancing innate immunity and promoting cell survival through effective regulation of antibacterial, antiviral, and antioxidant defense mechanisms in red-lip mullet.


Subject(s)
Antioxidants , Fish Proteins , Galectins , Smegmamorpha , Animals , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Proteins/immunology , Smegmamorpha/immunology , Smegmamorpha/genetics , Galectins/metabolism , Galectins/genetics , Antioxidants/metabolism , Fish Diseases/immunology , Cytokines/metabolism , Immunity, Innate , Poly I-C/immunology , Lactococcus/physiology , Lipopolysaccharides/immunology , Chemokines/metabolism , Chemokines/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Novirhabdovirus/physiology , Novirhabdovirus/immunology , Antiviral Agents/metabolism
2.
Dev Comp Immunol ; 156: 105175, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38574831

ABSTRACT

Peroxiredoxin-1 (Prdx1) is a thiol-specific antioxidant enzyme that detoxifies reactive oxygen species (ROS) and regulates the redox status of cells. In this study, the Prdx1 cDNA sequence was isolated from the pre-established Amphiprion clarkii (A. clarkii) (AcPrdx1) transcriptome database and characterized structurally and functionally. The AcPrdx1 coding sequence comprises 597 bp and encodes 198 amino acids with a molecular weight of 22.1 kDa and a predicted theoretical isoelectric point of 6.3. AcPrdx1 is localized and functionally available in the cytoplasm and nucleus of cells. The TXN domain of AcPrdx1 comprises two peroxiredoxin signature VCP motifs, which contain catalytic peroxidatic (Cp-C52) and resolving cysteine (CR-C173) residues. The constructed phylogenetic tree and sequence alignment revealed that AcPrdx1 is evolutionarily conserved, and its most closely related counterpart is Amphiprion ocellaris. Under normal physiological conditions, AcPrdx1 was ubiquitously detected in all tissues examined, with the most robust expression in the spleen. Furthermore, AcPrdx1 transcripts were significantly upregulated in the spleen, head kidney, and blood after immune stimulation by polyinosinic:polycytidylic acid (poly (I:C)), lipopolysaccharide (LPS), and Vibrio harveyi injection. Recombinant AcPrdx1 (rAcPrdx1) demonstrated antioxidant and DNA protective properties in a concentration-dependent manner, as evidenced by insulin disulfide reduction, peroxidase activity, and metal-catalyzed oxidation (MCO) assays, whereas cells transfected with pcDNA3.1(+)/AcPrdx1 showed significant cytoprotective function under oxidative and nitrosative stress. Overexpression of AcPrdx1 in fathead minnow (FHM) cells led to a lower viral copy number following viral hemorrhagic septicemia virus (VHSV) infection, along with upregulation of several antiviral genes. Collectively, this study provides insights into the function of AcPrdx1 in defense against oxidative stressors and its role in the immune response against pathogenic infections in A. clarkii.


Subject(s)
Fish Proteins , Peroxiredoxins , Phylogeny , Vibrio Infections , Animals , Peroxiredoxins/metabolism , Peroxiredoxins/genetics , Peroxiredoxins/immunology , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Proteins/immunology , Vibrio Infections/immunology , Poly I-C/immunology , Fish Diseases/immunology , Immunity, Innate , Vibrio/immunology , Vibrio/physiology , Cloning, Molecular , Amino Acid Sequence , Perciformes/immunology , Lipopolysaccharides/immunology , Sequence Alignment , Reactive Oxygen Species/metabolism
3.
Fish Shellfish Immunol ; 146: 109434, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331055

ABSTRACT

Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a member of the TRAF family of adaptor proteins involved in the signal transduction pathways of both TNF receptor and interleukin-1 receptor/Toll-like receptor superfamilies. In this study, red-spotted grouper (Epinephelus akaara) TRAF6 (EaTraf6) was identified and characterized. The open reading frame of EaTraf6, 1713 bp in length, encodes a putative protein of 570 amino acids and has a predicted molecular weight and theoretical isoelectric point of 64.11 kDa and 6.07, respectively. EaTraf6 protein contains an N-terminal RING-type zinc finger domain, two TRAF-type zinc finger domains, a coiled-coil region (zf-TRAF), and a conserved C-terminal meprin and TRAF homology (MATH) domain. EaTraf6 shared the highest amino acid sequence identity with its ortholog from Epinephelus coioides, and phylogenetic analysis showed all fish TRAF6s clustered together and apart from other species. qRT-PCR results revealed that EaTraf6 was ubiquitously expressed in all examined tissues, with the highest level detected in the blood. In the immune challenge, EaTraf6 exhibited modulated mRNA expression levels in the blood and spleen. The subcellular localization analysis revealed that the EaTraf6 protein was predominantly present in the cytoplasm; however, it could translocate into the nucleus following poly (I:C) stimulation. The antiviral function of EaTraf6 was confirmed by analyzing the expression of host antiviral genes and viral genomic RNA during viral hemorrhagic septicemia virus infection. Additionally, luciferase reporter assay results indicated that EaTraf6 is involved in the activation of the NF-κB signaling pathway upon poly (I:C) stimulation. Finally, the effect of EaTraf6 on cytokine gene expression and its role in regulating macrophage M1 polarization were demonstrated. Collectively, these findings suggest that EaTraf6 is a crucial immune-related gene that significantly contributes to antiviral functions and regulation of NF-κB activity in the red-spotted grouper.


Subject(s)
Bass , Fish Diseases , Animals , TNF Receptor-Associated Factor 6 , NF-kappa B/genetics , NF-kappa B/metabolism , Phylogeny , Signal Transduction , Fish Proteins/chemistry , Immunity, Innate/genetics
4.
Fish Shellfish Immunol ; 146: 109365, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38199263

ABSTRACT

DDX41, a member of the DEAD-box helicase family, serves as a vital cytosolic DNA sensor and plays a pivotal role in controlling the activation of type I interferon responses in mammals. However, the functional aspects of fish DDX41 remain relatively unexplored. In this study, we identified and characterized the DDX41 gene in Amphiprion clarkii transcriptomes and designated the gene as AcDDX41. The complete open reading frame of AcDDX41 encoded a putative protein comprising 617 amino acids. Notably, the predicted AcDDX41 protein shared several structural features that are conserved in DDX41, including DEXDc, HELICc, and zinc finger domains, as well as conserved sequence "Asp-Glu-Ala-Asp (D-E-A-D)." AcDDX41 exhibited the highest sequence homology (99.68 % similarity) with DDX41 from Acanthochromis polyacanthus. Phylogenetic analysis revealed that DDX41s from fish formed a branch distinct from that in other animals. All investigated tissues were shown to express AcDDX41 constitutively, with blood showing the highest expression levels, followed by the brain. Furthermore, AcDDX41 expression was significantly induced upon stimulation with poly I:C, lipopolysaccharide, and Vibrio harveyi, indicating its responsiveness to immune stimuli. We confirmed the antiviral function of AcDDX41 by analyzing gene expression and viral replication during viral hemorrhagic septicemia virus infection. Additionally, using a luciferase reporter assay, we validated the ability of AcDDX41 to activate the NF-κB signaling pathway upon stimulation with poly I:C. Finally, AcDDX41 influenced cytokine gene expression and played a regulatory role in macrophage M1 polarization in RAW 264.7 cells. Collectively, these results highlight the significance of AcDDX41 as an immune-related gene that contributes substantially to antiviral defense and regulation of NF-κB activity.


Subject(s)
NF-kappa B , Perciformes , Animals , NF-kappa B/genetics , Phylogeny , DEAD-box RNA Helicases , Immunity, Innate/genetics , Perciformes/metabolism , Macrophages/metabolism , Antiviral Agents , Poly I , Fish Proteins , Mammals/metabolism
5.
Fish Shellfish Immunol ; 141: 109009, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37598735

ABSTRACT

Thioredoxin-like protein 1 (TXNL1) is a redox-active protein belonging to the thioredoxin family, which mainly controls the redox status of cells. The TXNL1 gene from Amphiprion clarkii (AcTXNL1) was obtained from a pre-established transcriptome database. The AcTXNL1 is encoded with 289 amino acids and is predominantly localized in the cytoplasm and nucleus. The TXN domain of AcTXNL1 comprises a34CGPC37 motif with redox-reactive thiol (SH-) groups. The spatial distribution pattern of AcTXNL1 mRNA was examined in different tissues, and the muscle was identified as the highest expressed tissue. AcTXNL1 mRNA levels in the blood and gills were significantly increased in response to different immunostimulants. In vitro antioxidant capacity of the recombinant AcTXNL1 protein (rACTXNL1) was evaluated using the ABTS free radical-scavenging activity assay, cupric ion reducing antioxidant capacity assay, turbidimetric disulfide reduction assay, and DNA nicking protection assay. The potent antioxidant activity of rAcTXNL1 exhibited a concentration-dependent manner in all assays. Furthermore, in the cellular environment, overexpression of AcTXNL1 increased cell viability under H2O2 stress and reduced nitric oxide (NO) production induced by lipopolysaccharides (LPS). Collectively, the experimental results revealed that AcTXNL1 is an antioxidant and immunologically important gene in A. clarkii.


Subject(s)
Antioxidants , Hydrogen Peroxide , Animals , Antioxidants/metabolism , Amino Acid Sequence , Fish Proteins/chemistry , Recombinant Proteins/genetics , Thioredoxins/genetics , Thioredoxins/chemistry , RNA, Messenger
6.
Fish Shellfish Immunol ; 133: 108552, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36669605

ABSTRACT

Peroxiredoxin 1 is a member of the typical 2-Cys peroxiredoxin family, which serves diverse functions in gene expression, immune and inflammatory responses, and tumor progression. In this study, we aimed to analyze the structural, functional, and immunomodulatory properties of peroxiredoxin 1 from Epinephelus akaara (EaPrx1). The open reading frame of EaPrx1 is 597 base pairs in length, encoding 198 amino acids, with a molecular weight of approximately 22 kDa. The in silico analysis revealed that EaPrx1 shares a conserved thioredoxin fold and signature motifs that are critical for its catalytic activity and oligomerization. Further, EaPrx1 is closely related to Epinephelus lanceolatus Prx1 and clustered in the Fishes group of the vertebrate clade, revealing that EaPrx1 was conserved throughout evolution. In terms of tissue distribution, a high level of EaPrx1 expression was observed in the spleen, brain, and blood tissues. Likewise, in immune challenge experiments, significant transcriptional modulations of EaPrx1 upon lipopolysaccharide, polyinosinic:polycytidylic acid, and nervous necrosis virus injections were noted at different time points, indicating the immunological role of EaPrx1 against pathogenic infections. In the functional analysis, rEaPrx1 exhibited substantial DNA protection, insulin disulfide reduction, and tissue repair activities, which were concentration-dependent. EaPrx1/pcDNA™ 3.1 (+)-transfected fathead minnow cells revealed high cell viability upon arsenic toxicity, indicating the heavy metal detoxification activity of EaPrx1. Taken together, the transcriptional and functional studies imply critical roles of EaPrx1 in innate immunity, redox regulation, apoptosis, and tissue-repair processes in E. akaara.


Subject(s)
Bass , Fish Diseases , Animals , Peroxiredoxins/genetics , Peroxiredoxins/chemistry , Bass/genetics , Bass/metabolism , Immunity, Innate/genetics , Antioxidants/metabolism , Oxidation-Reduction , Phylogeny , Gene Expression Regulation , Fish Proteins/chemistry
7.
Fish Shellfish Immunol ; 132: 108449, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36436687

ABSTRACT

Thioredoxins are small ubiquitous redox proteins that are involved in many biological processes. Proteins with thiol-disulfide bonds are essential regulators of cellular redox homeostasis and diagnostic markers for redox-dependent diseases. Here, we identified and characterized the thioredoxin domain-containing protein 12 (EaTXNDC12) gene in red spotted grouper (Epinephelus akaara), evaluated transcriptional responses, and investigated the activity of the recombinant protein using functional assays. EaTXNDC12 is a 19.22-kDa endoplasmic reticulum (ER)-resident protein with a 522-bp open reading frame and 173 amino acids, including a signal peptide. We identified a conserved active motif (66WCGAC70) and ER retention motif (170GDEL173) in the EaTXNDC12 amino acid sequence. Relative EaTXNDC12 mRNA expression was analyzed using 12 different tissues, with the highest expression seen in brain tissue, while skin tissue showed the lowest expression level. Furthermore, mRNA expression in response to immune challenges was analyzed in the head kidney, blood, and gill tissues. EaTXNDC12 was significantly modulated in response to bacterial endotoxin lipopolysaccharide (LPS), nervous necrosis virus (NNV), and polyinosinic:polycytidylic acid (poly(I:C)) challenges in all of the tested tissues. Recombinant EaTXNDC12 (rEaTXNDC12) displayed antioxidant ability in an insulin reductase assay, and a capacity for free radical inhibition in a 2,2-diphenyl-1-picryl-hydrazyl-hydrate assay. In addition, a DNA nicking assay revealed that purified rEaTXNDC12 exhibited concentration-dependent DNA protection activity, while results from 2-hydroxyethyl disulfide and L-dehydroascorbic assays indicated that rEaTXNDC12a possesses reducing ability. Furthermore, fathead minnow (FHM) cells transfected with EaTXNDC12-pcDNA demonstrated significantly upregulated cell survival against H2O2-induced apoptosis. Collectively, the results of this study strengthen our knowledge of EaTXNDC12 with respect to cellular redox hemostasis and immune regulation in Epinephelus akaara.


Subject(s)
Bass , Fish Diseases , Animals , Base Sequence , Cloning, Molecular , Hydrogen Peroxide/metabolism , Immunity , RNA, Messenger/metabolism , Thioredoxins/genetics , Thioredoxins/chemistry , Disulfides , Oxidoreductases/metabolism , DNA , Fish Proteins/chemistry , Gene Expression Regulation , Phylogeny
8.
Fish Shellfish Immunol ; 131: 939-944, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36356858

ABSTRACT

Red-spotted grouper (Epinephelus akaara) is a popular aquaculture species with high commercial value in the food industry. However, some infectious diseases may cause mass mortality in cultural practice. Therefore, it is important to understand the immune responses of red-spotted groupers upon pathogenic invasion to develop successful disease prevention mechanisms. Here, we analyzed the transcriptomic profiles of red-spotted grouper head kidney stimulated with lipopolysaccharide (LPS), polyinosinic:polycytidylic acid (poly I:C), and nervous necrosis virus (NNV) and identified differentially expressed genes (DEGs) using RNA-sequencing technology. Cluster analysis of the identified DEGs showed DEG distribution in nine separate clusters based on their expression patterns. However, significant upregulation of most DEGs was observed 6 h after poly I:C stimulation. The DEGs were functionally annotated using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, which revealed significant expression of many immune-related signaling pathways, including antiviral, protein translation, cellular protein catabolic process, inflammatory responses, DNA repair, and cell division. Furthermore, selected DEGs were validated by quantitative real-time PCR, confirming the reliability of our findings. Collectively, this study provides insight into the immune responses of red-spotted groupers, thereby expanding the understanding of fish immunity.


Subject(s)
Bass , Fish Diseases , Nodaviridae , RNA Virus Infections , Animals , Lipopolysaccharides/pharmacology , RNA-Seq , Reproducibility of Results , Nodaviridae/physiology , Poly I-C/pharmacology , Transcriptome , Necrosis , Fish Proteins
9.
Fish Shellfish Immunol ; 130: 206-214, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36100068

ABSTRACT

Amphiprion clarkii is increasingly being used as a captive-bred ornamental fish in South Korea. However, its breeding has recently been greatly hindered by destructive diseases due to pathogens. B-cell lymphoma-2 (Bcl2), a mitochondrial apoptosis regulatory gene involved in immune responses, has not been investigated in anemonefish, including A. clarkii. Herein, we aimed to annotate Bcl2 in the A. clarkii transcriptome and examined its role against virus infections. Sequence analysis indicated that Bcl2 in A. clarkii (AcBcl2) contained all four Bcl-2 homology domains. The structure of AcBcl2 closely resembled those of previously analyzed anti-apoptotic Bcl2 proteins in mammals. Expression analysis showed that the highest level of AcBcl2 was expressed in blood. AcBcl2 expression in the blood was downregulated within 24 hpi when challenged with immune stimulants poly I:C and lipopolysaccharides. AcBcl2 reduced poly I:C-induced cell death. The propagation of viral hemorrhagic septicemia virus (VHSV) was higher in the presence of AcBcl2. Cell mortality was higher in AcBcl2 when transfected cells were infected with VHSV, and a higher viral transcript was observed compared to their respective controls. In conclusion, AcBcl2 is an anti-apoptotic protein, and its activity may facilitate the propagation of VHSV.


Subject(s)
Fish Diseases , Hemorrhagic Septicemia, Viral , Novirhabdovirus , Perciformes , Virus Diseases , Animals , Apoptosis Regulatory Proteins , Mammals , Novirhabdovirus/physiology , Poly I-C/pharmacology , Proto-Oncogene Proteins c-bcl-2
10.
Article in English | MEDLINE | ID: mdl-35798276

ABSTRACT

Caveolin-1 (Cav-1), a major structural component of caveolae, is involved in various biological functions, such as endocytosis, cholesterol trafficking, transcytosis, signal transduction, and immunity. To date, three caveolin members have been identified in mammals: Cav-1, Cav-2, and Cav-3. In this study, we identified the Cav-1 sequence from Amphiprion clarkii (AcCav-1). The protein is 181 amino acids long, with a molecular weight of 20.73 kDa and a predicted isoelectric point of 5.48. The phylogenetic tree disclosed that AcCav-1 is closely related to teleost fish orthologs and clusters together with vertebrates. It shares the highest identity (99.4%) and similarity (100%) with Amphiprion ocellaris. Subcellular localization assays showed that Cav-1 expressed in the endoplasmic reticulum and cytoplasm. Further, AcCav-1 was ubiquitously expressed in all examined tissues, but most highly in the skin and the spleen. The up and downregulation of AcCav-1 was observed throughout the testing period after in-vivo immunostimulation with lipopolysaccharides (LPS), polyinosinic:polycytidylic acid (poly (I:C), and Vibrio harveyi (V. harveyi). The antiviral assay showed that AcCav-1 overexpression suppresses the replication of the viral hemorrhagic septicemia virus (VHSV) in Fathead minnow cells by activating antiviral genes. Further, LPS induced NO production and H2O2-mediated oxidative stress assays showed that AcCav-1 is involved in the regulation of oxidative stress. Collectively, these findings suggest the indispensable role of Cav-1 in the immune system of A.clarkii.


Subject(s)
Caveolin 1 , Perciformes , Animals , Antiviral Agents , Caveolin 1/genetics , Caveolin 1/metabolism , Homeostasis , Hydrogen Peroxide/metabolism , Lipopolysaccharides/pharmacology , Mammals/metabolism , Oxidation-Reduction , Perciformes/metabolism , Phylogeny , Poly I-C/pharmacology
11.
Fish Shellfish Immunol ; 126: 217-226, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35636699

ABSTRACT

Interleukin 17D (IL-17D), a pro-inflammatory cytokine, is a signature cytokine of T helper 17 (Th17) cells. However, studies characterizing the functions of IL-17D in teleost are scarce. Therefore, we aimed to characterize the properties of IL-17D in Amphiprion clarkii. We performed spatial and temporal expression, AcIL-17D-mediated antibacterial and inflammatory gene expression, NFκB pathway-related gene expression analyses, and bacterial colony counting and cell protection assays. We found that AcIL-17D contains a 630 bp coding sequence and encodes 210 amino acids. The spatial expression analysis of AcIL-17D in 12 tissues showed ubiquitous expression, with the highest expression in the brain, followed by blood and skin. Temporal expression analysis of AcIL-17D in blood showed upregulated expression at 6 and 24 h (polyinosinic: polycytidylic acid and lipopolysaccharide), 12 h (all stimulants), and 48 h (polyinosinic: polycytidylic acid and Vibrio harveyi). AcIL-17D expression in the blood gradually decreased at later hours in response to all the stimulants. After treatment of fathead minnow (FHM) cells with different recombinant AcIL-17D concentrations, the downstream gene expression analysis showed increased expression of antimicrobial genes in the FHM cells, namely [NK-Lysin (NKL), Hepcidin antimicrobial peptide-1 (HAMP-1), Defensin-ß (DEFB1)] and some inflammatory genes such as IL-1ß, TNF-α, IL-11, and STAT3. Further nuclear factor κB (NFκB) subunits (NFκB1, NFκB2, RelA, and Rel-B) showed upregulated gene expression at 12 and 24 h. The bacterial colony counting assay using FHM cells showed lower bacterial colony counts in rAcIL-17D-treated cells than in control. Furthermore, the Water-Soluble Tetrazolium Salt (WST -1) assay confirmed the ability of rAcIL-17D in the protection of FHM cells from bacterial infection and conducted the Hoechst 33342 staining upon treatment with rAcIL-17D and rMBP. Therefore, our findings provide important insights into the activation of IL-17D pathway genes in FHM cells, the protective role of AcIL-17D against bacterial infection, and host defense mechanisms in teleost.


Subject(s)
Cyprinidae , Interleukin-27 , Perciformes , Amino Acid Sequence , Animals , Cloning, Molecular , Cyprinidae/genetics , Cyprinidae/metabolism , Cysteine , Cytokines/genetics , Interleukin-17/chemistry , Interleukin-27/genetics , NF-kappa B/genetics , NF-kappa B/metabolism , Perciformes/genetics , Perciformes/metabolism , Poly C
12.
Fish Shellfish Immunol ; 124: 391-400, 2022 May.
Article in English | MEDLINE | ID: mdl-35462004

ABSTRACT

In flounder aquaculture, selective breeding plays a vital role in the development of disease-resistant traits and animals with high growth rates. Moreover, superior animals are required to achieve high profits. Unlike growth-related traits, disease-resistant experiments need to be conducted in a controlled environment, as the improper measurement of traits often leads to low genetic correlation and incorrect estimation of breeding values. In this study, viral hemorrhagic septicemia virus (VHSV) resistance was studied using a genome-wide association study (GWAS), and the genetic parameters were estimated. Genotyping was performed using a high-quality 70 K single nucleotide polymorphism (SNP) Affymetrix® Axiom® myDesign™ Genotyping Array of olive flounder. A heritability of ∼0.18 for resistance to VHSV was estimated using genomic information of the fish. According to the GWAS, significant SNPs were detected in chromosomes 21, 24, and contig AGQT02032065.1. Three SNPs showed significance at the genome-wide level (p < 1 × 10-6), while others showed significance above the suggestive cutoff (p < 1 × 10-4). The 3% phenotypic variation was explained by the highest significant SNP, named AX-419319631. Of the important genes for disease resistance, SNPs were associated with plcg1, epha4, clstn2, pik3cb, hes6, meis3, prx6, cep164, siae, and kirrel3b. Most of the genes associated with these SNPs have been previously reported with respect to viral entry, propagation, and immune mechanisms. Therefore, our study provides helpful information regarding VHSV resistance in olive flounder, which can be used for breeding applications.


Subject(s)
Fish Diseases , Flounder , Hemorrhagic Septicemia, Viral , Novirhabdovirus , Animals , Aquaculture , Flounder/genetics , Genome-Wide Association Study/veterinary , Hemorrhagic Septicemia, Viral/genetics
13.
Fish Shellfish Immunol ; 121: 86-98, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34990805

ABSTRACT

Galectin-8 is a typical ß-galactoside binding lectin, which primarily functions as a pattern recognition receptor and/or danger receptor that is engaged in pathogen recognition by the host innate immune system. Although several fish galectins have been identified, the role of galectin-8 in teleost immunity is still not fully understood. In this study, molecular, transcriptional, and immune-related functions of galectin-8 (EaGal8) from red-spotted grouper (Epinephelus akaara) were analyzed. The open reading frame of EaGal8 comprised 960 bp encoding 319 amino acids of a ∼35 kDa protein, composed of the N- and C-terminal carbohydrate recognition domains joined by a short hinge peptide. Phylogenetic analysis revealed that EaGal8 was closely related to the Epinephelus lanceolatus galectin-8-like protein. Although EaGal8 showed ubiquitous tissue expression, the highest expression level was observed in the blood. Immunostimulants, including lipopolysaccharide, poly(I:C), and nervous necrosis virus, significantly upregulated the EaGal8 transcription level in a time-dependent manner (p < 0.05). Furthermore, recombinant EaGal8 (rEaGal8) showed a binding affinity toward seven different carbohydrates in a concentration-dependent manner. In addition, rEaGal8 caused strong agglutination of fish red blood cells and several gram-positive and gram-negative bacteria, including Streptococcus iniae, Streptococcus parauberis, Lactococcus garvieae, Escherichia coli, Edwardsiella tarda, Vibrio alginolyticus, Vibrio parahaemolyticus, and Pseudomonas aeruginosa. For the first time in teleosts, we report the wound healing ability of galectin-8 in this study. At low concentrations, rEaGal8 showed potential wound healing responses in FHM cells, in vitro. Thus, this study reinforces the role of EaGal8 in innate immune responses against bacterial and viral infections and wound healing in red-spotted grouper.


Subject(s)
Bass , Fish Diseases , Fish Proteins , Galectins , Amino Acid Sequence , Animals , Bass/genetics , Bass/immunology , Fish Diseases/genetics , Fish Diseases/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Galectins/genetics , Galectins/immunology , Gene Expression Regulation , Gram-Negative Bacteria , Gram-Positive Bacteria , Immunity, Innate , Phylogeny , Sequence Alignment , Wound Healing
14.
Fish Shellfish Immunol ; 120: 261-270, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34848304

ABSTRACT

Thioredoxin, a highly conserved class of proteins involved in redox signaling, is found in a range of organisms from bacteria to higher-level eukaryotes. Thioredoxin acts as an active regulatory enzyme to eliminate excessive reactive oxygen species, thereby preventing cellular damage. In this study, the cDNA sequence of thioredoxin domain-containing 5 (AbTXNDC5) from the disk abalone transcriptomic database was characterized. An in silico analysis of AbTXNDC5 was performed, and its spatial and temporal expression patterns in hemocytes and gills in response to bacteria (Vibrio parahaemolyticus, Listeria monocytogenes), viral hemorrhagic septicemia virus, and pathogen-associated molecular pattern molecules were observed. Furthermore, AbTXNDC5 expression was examined in different developmental stages. Functional assays to explore insulin disulfide reduction, anti-apoptotic activity, and protection against hypoxic cell death of AbTXNDC5 were conducted through recombinant proteins or overexpression in cells. AbTXNDC5 contains a 1179-bp open reading frame coding for 392 amino acids. Conserved thiol-disulfide cysteine residues within two Cys-X-X-Cys motifs were found in AbTXNDC5. Quantitative real-time polymerase chain reaction indicated that healthy digestive tract and hemocyte tissues expressed high levels of AbTXNDC5 mRNA, which may protect the host from invading pathogens. Immune-challenged abalone hemocytes and gills exhibited upregulated expression of AbTXNDC5 at different time points. rAbTXNDC5 also exhibited a functional insulin disulfide reductase activity. AbTXNDC5 conferred protection to cultured cells from apoptosis and hypoxia-induced stress, compared to the pcDNA3.1(+) transfected control cells. Therefore, AbTXNDC5 can be considered an important gene in abalones in relation to the primary immune system and regulation of redox homeostasis and confers protection from stress.


Subject(s)
Disulfides , Gastropoda , Insulins , Thioredoxins , Amino Acid Sequence , Animals , Gastropoda/genetics , Gene Expression Regulation , Listeria monocytogenes , Novirhabdovirus , Pathogen-Associated Molecular Pattern Molecules , Phylogeny , Thioredoxins/genetics , Vibrio parahaemolyticus
15.
Dev Comp Immunol ; 127: 104299, 2022 02.
Article in English | MEDLINE | ID: mdl-34662686

ABSTRACT

Superoxide dismutases (SODs) are metalloenzymes that convert superoxide radicals to H2O2 and O2. Although SODs have been extensively studied in mammals and other species, comparative studies in invertebrates, such as abalones, are lacking. Here, we aimed to characterize manganese superoxide dismutase in disk abalone (Haliotis discus discus) (AbMnSOD) by assessing its transcriptional levels at different embryonic developmental stages. Additionally, the temporal expression of AbMnSOD in different abalone tissues in response to bacterial, viral, and pathogen-associated molecular pattern (PAMP) stimuli was investigated. SOD activity was measured at various recombinant protein concentrations via the xanthine oxidase/WST-1 system. Cell viability upon exposure to H2O2, wound healing ability, and subcellular localization were determined in AbMnSOD-transfected cells. AbMnSOD was 681 bp long and contained the SOD-A domain. AbMnSOD expression was higher at the trochophore stage than at the other stages. When challenged with immune stimulants, AbMnSOD showed the highest expression at 6 h post-injection (p.i.) for all stimulants except lipopolysaccharides. In the gills, the highest AbMnSOD expression was observed at 6 h p.i., except for the Vibrio parahaemolyticus challenge. Recombinant AbMnSOD showed concentration-dependent xanthine oxidase activity. Furthermore, AbMnSOD-transfected cells survived H2O2-induced apoptosis and exhibited significant wound gap closure. As expected, AbMnSOD was localized in the mitochondria of the cells. Our findings suggest that AbMnSOD is an essential antioxidant enzyme that participates in regulating developmental processes and defense mechanisms against oxidative stress in hosts.


Subject(s)
Gastropoda , Vibrio parahaemolyticus , Animals , Gene Expression Regulation , Hydrogen Peroxide , Immunity, Innate , Mammals , Phylogeny , Superoxide Dismutase/genetics
16.
Article in English | MEDLINE | ID: mdl-34801710

ABSTRACT

Viperin is known to exhibit activity against RNA viral infection. Viral hemorrhagic septicemia virus (VHSV) is a negative-sense single-stranded RNA virus that causes severe loss in aquaculture species. Susceptible species include redlip mullets (Liza haematocheila), which has become an economically important euryhaline mugilid species in offshore aquaculture along the west coast of Korea. Although interferon-stimulated genes are suspected to act against VHSV, specific pathways or mechanisms of these antiviral actions in redlip mullets have not yet been established. In silico studies of the mullet viperin (Lhrsad2) revealed an S-adenosyl methionine binding conserved domain containing the 77CNYKCGFC84 sequence. In the tissue distribution, the highest levels of lhrsad2 expression were observed in the blood. When injected with poly(I:C), an approximately 17-fold upregulation (compared to the control) of viperin was detected in the blood after 24 h. Furthermore, non-viral immune stimuli, including Lactococcus garvieae (L. garvieae) and lipopolysaccharide (LPS), that were injected into redlip mullets were not found to induce considerable levels of viperin expression. Subcellular analysis revealed that Lhrsad2 localized to the endoplasmic reticulum (ER). To investigate Lhrsad2's antiviral effects against VHSV, cells overexpressing lhrsad2 were infected with VHSV, and then the viral titer and viral gene expression were analyzed. Both assays revealed the potential of Lhrsad2 to significantly reduce VHSV transcription and replication. In brief, the current study illustrates the remarkable ability of viperin to weaken VHSV in redlip mullet.


Subject(s)
Novirhabdovirus , Smegmamorpha , Animals , Antiviral Agents/pharmacology , Fish Proteins , Immunity, Innate
17.
Fish Shellfish Immunol ; 109: 62-70, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33348035

ABSTRACT

Glutathione S-transferases (GSTs) are important enzymes involved in phase II detoxification and function by conjugating with the thiol group of glutathione. In this study, we isolated an omega class GST from the big-belly seahorse (Hippocampus abdominalis; HaGSTO1) to study the putative xenobiotic responses and defense ability against viral and bacterial infections in this animal. The isolated HaGSTO1 gene, with a cording sequence of 720 bp, encodes a peptide of 239 amino acids. The predicted molecular mass and theoretical isoelectric point of HaGSTO1 was 27.47 kDa and 8.13, respectively. In-silico analysis of HaGSTO1 revealed a characteristic N-terminal thioredoxin-like domain and a C-terminal domain. Unlike other GSTs, the C-terminal of HaGSTO1 reached up to the N-terminal, and the N-terminal functional group was cysteine rather than tyrosine or serine, as observed in other GSTs. Phylogenetic analysis showed the evolutionary proximity of HaGSTO1 with other identified vertebrate and invertebrate GST orthologs. For the first time, we demonstrated the viral defense capability of HaGSTO1 against viral hemorrhagic septicemia virus (VHSV) infection. All six nucleoproteins of VHSV were significantly downregulated in HaGSTO1-overexpressing FHM cells at 24 h after infection compared with those in the control. Moreover, arsenic toxicity was significantly reduced in HaGSTO1-overexpressing FHM cells, and cell viability increased. Real-time polymerase chain reaction analysis showed that HaGSTO1 transcripts were highly expressed in the pouch and gill when compared with those in other tissues. Blood HaGSTO1 transcripts were significantly upregulated after Edwardsiella tarda, Streptococcus iniae, lipopolysaccharide, and polyinosinic:polycytidylic acid challenge experiments. Collectively, these findings suggest the involvement of HaGSTO1 in the host defense mechanism of seahorses.


Subject(s)
Fish Diseases/immunology , Gene Expression Regulation/immunology , Glutathione Transferase/genetics , Glutathione Transferase/immunology , Immunity, Innate/genetics , Smegmamorpha/genetics , Smegmamorpha/immunology , Amino Acid Sequence , Animals , Female , Fish Diseases/virology , Fish Proteins/chemistry , Fish Proteins/genetics , Fish Proteins/immunology , Gene Expression Profiling/veterinary , Glutathione Transferase/chemistry , Male , Novirhabdovirus/physiology , Phylogeny , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/virology , Sequence Alignment/veterinary
18.
Article in English | MEDLINE | ID: mdl-33141081

ABSTRACT

Glutathione-S-transferase (GST) is a key enzyme in the phase-II detoxification process and is a biomarker of oxidative stress. In this study, we analyzed the molecular, biochemical, and antioxidant properties of GST alpha-4 from Hippocampus abdominalis (HaGSTA-4). Also, the spatial and temporal expression of HaGSTA-4 upon immune challenge with abiotic and biotic stimulants were evaluated. The HaGSTA-4 ORF encodes 223 amino acids with a molecular weight of 25.7 kDa, and an estimated isoelectric point (pI) of 8.47. It consists of the GST_C superfamily and thioredoxin-like superfamily domain. The phylogenetic tree revealed that HaGSTA-4 is evolutionarily conserved with its GST alpha class counterparts. From pairwise alignment, the highest values of identity (78.5%) and similarity (85.7%) were with Parambassis ranga GSTA-4. Protein rHaGSTA-4 exhibited the highest conjugation activity towards 1-chloro-2,4-dinitrobenzene (CDNB) at pH 7 and 20 °C. A disk diffusion assay showed that rHaGSTA-4 significantly protects cells from the stress of exposure to ROS inducers such as CuSO4, CdCl2, and ZnCl2. Furthermore, overexpressed HaGSTA-4 defended cells against oxidative stress caused by H2O2; evidence of selenium-independent peroxidase activity. From qPCR, the tissue-specific expression profile demonstrates that HaGSTA-4 is most highly expressed in the kidney, followed by the intestine and stomach, among fourteen different tissues extracted from healthy seahorses. The mRNA expression profile of HaGSTA-4 upon immune challenge varied depending on the tissue and the time after challenge. Altogether, this study suggests that HaGSTA-4 may be involved in protection against oxidative stress, in immune defense regulation, and xenobiotic metabolism.


Subject(s)
Antioxidants/metabolism , Fish Proteins/genetics , Gene Expression Regulation , Glutathione Transferase/genetics , Immunity, Innate/genetics , Isoenzymes/genetics , Smegmamorpha/genetics , Amino Acid Sequence , Animals , Edwardsiella tarda/immunology , Edwardsiella tarda/physiology , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Proteins/classification , Fish Proteins/metabolism , Gene Expression Profiling/methods , Glutathione Transferase/classification , Glutathione Transferase/metabolism , Hydrogen-Ion Concentration , Isoenzymes/classification , Isoenzymes/metabolism , Liver/immunology , Liver/metabolism , Liver/microbiology , Phylogeny , Sequence Homology, Amino Acid , Smegmamorpha/metabolism , Streptococcus iniae/immunology , Streptococcus iniae/physiology , Temperature
19.
Fish Shellfish Immunol ; 103: 111-125, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32320761

ABSTRACT

The IκB kinases (IKK) are large multiprotein complexes that regulate the activation of the transcription factor NF-κB and are involved in a diverse range of biological processes, including innate immunity, inflammation, and development. To explore the potential roles of invertebrate IKKs on immunity, three IKK encoding genes have been identified from molluscan species disk abalone and designed as AbIKK1, AbIKK2 and AbIKK3 at the transcriptional level. Coding sequences of AbIKK1, AbIKK2 and AbIKK3 encode the peptides of 746, 751 and 713 amino acids with the predicted molecular mass of 86.16, 86.12 and 81.88 kDa respectively. All three AbIKKs were found to share conserved IKK family features including the kinase superfamily domain (KD), ubiquitin-like domain (ULD), and α-helical scaffold/dimerization domain (SDD), similar to their mammalian counterparts. Under normal physiological conditions, AbIKKs were ubiquitously detected in six different tissues, with the highest abundance in the digestive tract and gills. Temporal transcriptional profiles in abalone hemocytes revealed the induction of AbIKK1, AbIKK2, and AbIKK3 expression following exposure to Gram-negative (Vibrio parahemolyticus) and Gram-positive (Listeria monocytogenes) bacteria, viruses (viral hemorrhagic septicemia virus, VHSV), LPS, or poly I:C. The overexpression of AbIKKs in HEK293T or RAW264.7 murine macrophage cells induced NF-κB promoter activation independent of stimulation by TNF-α or LPS. Moreover, iNOS and COX2 expression was induced in AbIKK transfected RAW264.7 murine macrophage cells and the induced state was maintained post-LPS treatment. Furthermore, mRNA levels of three selected cytokine-encoding genes (IL-1ß, IL-6, and TNF-α) were found to be elevated in abalone IKK overexpressed RAW264.7 murine macrophage cells, both with and without LPS exposure. Overall, our findings demonstrated that AbIKKs identified in this study were positively involved in eliciting innate immune responses in abalone. In addition, the data revealed the presence of an evolutionarily conserved signaling mechanism for IKK mediated NF-κB activation in mollusks.


Subject(s)
Gastropoda/genetics , Gastropoda/immunology , I-kappa B Kinase/genetics , Immunity, Innate/genetics , Animals , Gastropoda/virology , Gene Expression Regulation , HEK293 Cells , Humans , I-kappa B Kinase/immunology , Immunity, Innate/immunology , Listeria monocytogenes/physiology , Mice , Novirhabdovirus/physiology , Poly I-C/pharmacology , RAW 264.7 Cells , Sequence Analysis, Protein , Vibrio parahaemolyticus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...