Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36904724

ABSTRACT

The importance of monitoring the electron density uniformity of plasma has attracted significant attention in material processing, with the goal of improving production yield. This paper presents a non-invasive microwave probe for in-situ monitoring electron density uniformity, called the Tele-measurement of plasma Uniformity via Surface wave Information (TUSI) probe. The TUSI probe consists of eight non-invasive antennae and each antenna estimates electron density above the antenna by measuring the surface wave resonance frequency in a reflection microwave frequency spectrum (S11). The estimated densities provide electron density uniformity. For demonstration, we compared it with the precise microwave probe and results revealed that the TUSI probe can monitor plasma uniformity. Furthermore, we demonstrated the operation of the TUSI probe beneath a quartz or wafer. In conclusion, the demonstration results indicated that the TUSI probe can be used as an instrument for a non-invasive in-situ method for measuring electron density uniformity.

2.
Nanomaterials (Basel) ; 12(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36558310

ABSTRACT

SiO2 etching characteristics were investigated in detail. Patterned SiO2 was etched using radio-frequency capacitively coupled plasma with pulse modulation in a mixture of argon and fluorocarbon gases. Through plasma diagnostic techniques, plasma parameters (radical and electron density, self-bias voltage) were also measured. In this work, we identified an etching process window, where the etching depth is a function of the radical flux. Then, pulse-off time was varied in the two extreme cases: the lowest and the highest radical fluxes. It was observed that increasing pulse-off time resulted in an enhanced etching depth and the reduced etching depth respectively. This opposing trend was attributed to increasing neutral to ion flux ratio by extending pulse-off time within different etching regimes.

3.
Nanomaterials (Basel) ; 12(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36364574

ABSTRACT

One of the cleaning processes in semiconductor fabrication is the ashing process using oxygen plasma, which has been normally used N2 gas as additive gas to increase the ashing rate, and it is known that the ashing rate is strongly related to the concentration of oxygen radicals measured OES. However, by performing a comprehensive experiment of the O2 plasma ashing process in various N2/O2 mixing ratios and RF powers, our investigation revealed that the tendency of the density measured using only OES did not exactly match the ashing rate. This problematic issue can be solved by considering the plasma parameter, such as electron density. This study can suggest a method inferring the exact maximum condition of the ashing rate based on the plasma diagnostics such as OES, Langmuir probe, and cutoff probe, which might be useful for the next-generation plasma process.

4.
Sensors (Basel) ; 22(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35957427

ABSTRACT

As the conventional voltage and current (VI) probes widely used in plasma diagnostics have separate voltage and current sensors, crosstalk between the sensors leads to degradation of measurement linearity, which is related to practical accuracy. Here, we propose a VI probe with a floating toroidal coil that plays both roles of a voltage and current sensor and is thus free from crosstalk. The operation principle and optimization conditions of the VI probe are demonstrated and established via three-dimensional electromagnetic wave simulation. Based on the optimization results, the proposed VI probe is fabricated and calibrated for the root-mean-square (RMS) voltage and current with a high-voltage probe and a vector network analyzer. Then, it is evaluated through a comparison with a commercial VI probe, with the results demonstrating that the fabricated VI probe achieved a slightly higher linearity than the commercial probe: R2 of 0.9967 and 0.9938 for RMS voltage and current, respectively. The proposed VI probe is believed to be applicable to plasma diagnostics as well as process monitoring with higher accuracy.

SELECTION OF CITATIONS
SEARCH DETAIL
...