Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Exp Med Biol ; 1351: 109-124, 2022.
Article in English | MEDLINE | ID: mdl-35175614

ABSTRACT

Graphene and graphene-based materials have been attracted in the past few years for biomedical applications due to their physicochemical and biological properties such as large surface area, chemical and mechanical stability, excellent conductivity, and good biocompatibility. Graphene-based materials not only surface modified graphene-based materials like graphene oxide (GO) or reduced graphene oxide (rGO) but also other structural forms like fullerene, carbon nanotubes, and graphite have been applied to advanced drug delivery systems. In this chapter, we review on the application of graphene-based materials in the drug delivery system with their physicochemical properties, methods for the preparation of graphene-based carriers, followed by analysis about their biodistribution and biosafety whether they are suitable as drug delivery carriers.


Subject(s)
Graphite , Nanostructures , Nanotubes, Carbon , Drug Carriers/chemistry , Drug Delivery Systems , Graphite/chemistry , Nanostructures/chemistry , Tissue Distribution
2.
Biomater Res ; 25(1): 24, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34321111

ABSTRACT

Various non-invasive administrations have recently emerged as an alternative to conventional needle injections. A transdermal drug delivery system (TDDS) represents the most attractive method among these because of its low rejection rate, excellent ease of administration, and superb convenience and persistence among patients. TDDS could be applicable in not only pharmaceuticals but also in the skin care industry, including cosmetics. Because this method mainly involves local administration, it can prevent local buildup in drug concentration and nonspecific delivery to tissues not targeted by the drug. However, the physicochemical properties of the skin translate to multiple obstacles and restrictions in transdermal delivery, with numerous investigations conducted to overcome these bottlenecks. In this review, we describe the different types of available TDDS methods, along with a critical discussion of the specific advantages and disadvantages, characterization methods, and potential of each method. Progress in research on these alternative methods has established the high efficiency inherent to TDDS, which is expected to find applications in a wide range of fields.

3.
Biomedicines ; 9(1)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467616

ABSTRACT

A variety of 2D materials have been developed for therapeutic biomedical studies. Because of their excellent physicochemical properties, 2D materials can be used as carriers for delivering therapeutic agents into a lesion, leading to phototherapy. Various optical imaging techniques have been used for the monitoring of the treatment process. Among these, photoacoustic imaging has unique advantages including relatively deep imaging depth and large field of view with high spatial resolution. In this review article, we summarize the types of photoacoustic imaging systems used for phototherapy monitoring, then we explore contrast-enhanced photoacoustic images using 2D materials. Finally, photoacoustic image-guided phototherapies are discussed. We conclude that 2D material-based phototherapy can be efficiently monitored by photoacoustic imaging techniques.

4.
Cancers (Basel) ; 12(4)2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32290285

ABSTRACT

Hyaluronic acid (HA) is a natural mucopolysaccharide and has many useful advantages, including biocompatibility, non-immunogenicity, chemical versatility, non-toxicity, biodegradability, and high hydrophilicity. Numerous tumor cells overexpress several receptors that have a high binding affinity for HA, while these receptors are poorly expressed in normal body cells. HA-based drug delivery carriers can offer improved solubility and stability of anticancer drugs in biological environments and allow for the targeting of cancer treatments. Based on these benefits, HA has been widely investigated as a promising material for developing the advanced clinical cancer therapies in various formulations, including nanoparticles, micelles, liposomes, and hydrogels, combined with other materials. We describe various approaches and findings showing the feasibility of improvement in theragnosis probes through the application of HA.

5.
Biomater Res ; 23: 16, 2019.
Article in English | MEDLINE | ID: mdl-31695925

ABSTRACT

BACKGROUND: Alopecia has become a very common disease that many people around the world are suffered. Minoxidil (MXD) is the most well-known commercialized drug in its treatment. However, in the case of MXD administration, there are some problems with low efficiency of transdermal delivery and additional side effects. METHOD: MXD and Rhodamine B (Rho B) are encapsulated in poly(Lactide-co-Glycolide) grafted hyaluronate nanoparticles (HA-PLGA/MXD NPs, HA-PLGA/Rho B NPs) which is prepared with W/O/W solvent evaporation method. After then, the investigation is carried out to confirm the feasibility of NPs in alopecia treatment. RESULTS: Both of HA-PLGA/MXD NPs and HA-PLGA/Rho B NPs are successfully prepared. In addition, it is confirmed that HA-PLGA NPs sufficiently delivered to cells without any significant cytotoxicity by cell viability, cellular uptake and skin permeation test. CONCLUSION: Taken together, HA-PLGA NPs as a transdermal delivery carrier to hair follicle cells can be exploited to develop the efficient and effective platform of transdermal drug delivery for the treatment of various diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...