Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 1242, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441830

ABSTRACT

Survival analyses for malignancies, including renal cell carcinoma (RCC), have primarily been conducted using the Cox proportional hazards (CPH) model. We compared the random survival forest (RSF) and DeepSurv models with the CPH model to predict recurrence-free survival (RFS) and cancer-specific survival (CSS) in non-metastatic clear cell RCC (nm-cRCC) patients. Our cohort included 2139 nm-cRCC patients who underwent curative-intent surgery at six Korean institutions between 2000 and 2014. The data of two largest hospitals' patients were assigned into the training and validation dataset, and the data of the remaining hospitals were assigned into the external validation dataset. The performance of the RSF and DeepSurv models was compared with that of CPH using Harrel's C-index. During the follow-up, recurrence and cancer-specific deaths were recorded in 190 (12.7%) and 108 (7.0%) patients, respectively, in the training-dataset. Harrel's C-indices for RFS in the test-dataset were 0.794, 0.789, and 0.802 for CPH, RSF, and DeepSurv, respectively. Harrel's C-indices for CSS in the test-dataset were 0.831, 0.790, and 0.834 for CPH, RSF, and DeepSurv, respectively. In predicting RFS and CSS in nm-cRCC patients, the performance of DeepSurv was superior to that of CPH and RSF. In no distant time, deep learning-based survival predictions may be useful in RCC patients.


Subject(s)
Carcinoma, Renal Cell/mortality , Databases, Factual , Deep Learning , Kidney Neoplasms/mortality , Adult , Aged , Disease-Free Survival , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Retrospective Studies , Survival Rate
2.
J Pers Med ; 10(4)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339385

ABSTRACT

Brain magnetic resonance imaging (MRI) is useful for predicting the outcome of patients with acute ischemic stroke (AIS). Although deep learning (DL) using brain MRI with certain image biomarkers has shown satisfactory results in predicting poor outcomes, no study has assessed the usefulness of natural language processing (NLP)-based machine learning (ML) algorithms using brain MRI free-text reports of AIS patients. Therefore, we aimed to assess whether NLP-based ML algorithms using brain MRI text reports could predict poor outcomes in AIS patients. This study included only English text reports of brain MRIs examined during admission of AIS patients. Poor outcome was defined as a modified Rankin Scale score of 3-6, and the data were captured by trained nurses and physicians. We only included MRI text report of the first MRI scan during the admission. The text dataset was randomly divided into a training and test dataset with a 7:3 ratio. Text was vectorized to word, sentence, and document levels. In the word level approach, which did not consider the sequence of words, and the "bag-of-words" model was used to reflect the number of repetitions of text token. The "sent2vec" method was used in the sensation-level approach considering the sequence of words, and the word embedding was used in the document level approach. In addition to conventional ML algorithms, DL algorithms such as the convolutional neural network (CNN), long short-term memory, and multilayer perceptron were used to predict poor outcomes using 5-fold cross-validation and grid search techniques. The performance of each ML classifier was compared with the area under the receiver operating characteristic (AUROC) curve. Among 1840 subjects with AIS, 645 patients (35.1%) had a poor outcome 3 months after the stroke onset. Random forest was the best classifier (0.782 of AUROC) using a word-level approach. Overall, the document-level approach exhibited better performance than did the word- or sentence-level approaches. Among all the ML classifiers, the multi-CNN algorithm demonstrated the best classification performance (0.805), followed by the CNN (0.799) algorithm. When predicting future clinical outcomes using NLP-based ML of radiology free-text reports of brain MRI, DL algorithms showed superior performance over the other ML algorithms. In particular, the prediction of poor outcomes in document-level NLP DL was improved more by multi-CNN and CNN than by recurrent neural network-based algorithms. NLP-based DL algorithms can be used as an important digital marker for unstructured electronic health record data DL prediction.

SELECTION OF CITATIONS
SEARCH DETAIL
...