Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Plant Pathol ; 12(4): 373-80, 2011 May.
Article in English | MEDLINE | ID: mdl-21453432

ABSTRACT

The host specificity of Ralstonia solanacearum, the causal organism of bacterial wilt on many solanaceous crops, is poorly understood. To identify a gene conferring host specificity of the bacterium, SL341 (virulent to hot pepper but avirulent to potato) and SL2029 (virulent to potato but avirulent to hot pepper) were chosen as representative strains. We identified a gene, rsa1, from SL2029 that confers avirulence to SL341 in hot pepper. The rsa1 gene encoding an 11.8-kDa protein possessed the perfect consensus hrp(II) box motif upstream of the gene. Although the expression of rsa1 was activated by HrpB, a transcriptional activator for hrp gene expression, Rsa1 protein was secreted in an Hrp type III secretion-independent manner. Rsa1 exhibited weak homology with an aspartic protease, cathepsin D, and possessed protease activity. Two specific aspartic protease inhibitors, pepstatin A and diazoacetyl-d,l-norleucine methyl ester, inhibited the protease activity of Rsa1. Substitution of two aspartic acid residues with alanine at positions 54 and 59 abolished protease activity. The SL2029 rsa1 mutant was much less virulent than the wild-type strain, but did not induce disease symptoms in hot pepper. These data indicate that Rsa1 is an extracellular aspartic protease and plays an important role for the virulence of SL2029 in potato.


Subject(s)
Aspartic Acid Proteases/metabolism , Bacterial Proteins/metabolism , Ralstonia solanacearum/enzymology , Ralstonia solanacearum/pathogenicity , Virulence Factors/metabolism , Amino Acid Sequence , Aspartic Acid Proteases/genetics , Bacterial Proteins/genetics , Base Sequence , Molecular Sequence Data , Mutagenesis, Site-Directed , Ralstonia solanacearum/metabolism , Solanum tuberosum/microbiology , Virulence/genetics , Virulence/physiology , Virulence Factors/genetics
2.
Plant Physiol ; 146(2): 657-68, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18055583

ABSTRACT

Pseudomonas fluorescens B16 is a plant growth-promoting rhizobacterium. To determine the factors involved in plant growth promotion by this organism, we mutagenized wild-type strain B16 using OmegaKm elements and isolated one mutant, K818, which is defective in plant growth promotion, in a rockwool culture system. A cosmid clone, pOK40, which complements the mutant K818, was isolated from a genomic library of the parent strain. Tn3-gusA mutagenesis of pOK40 revealed that the genes responsible for plant growth promotion reside in a 13.3-kb BamHI fragment. Analysis of the DNA sequence of the fragment identified 11 putative open reading frames, consisting of seven known and four previously unidentified pyrroloquinoline quinone (PQQ) biosynthetic genes. All of the pqq genes showed expression only in nutrient-limiting conditions in a PqqH-dependent manner. Electrospray ionization-mass spectrometry analysis of culture filtrates confirmed that wild-type B16 produces PQQ, whereas mutants defective in plant growth promotion do not. Application of wild-type B16 on tomato (Solanum lycopersicum) plants cultivated in a hydroponic culture system significantly increased the height, flower number, fruit number, and total fruit weight, whereas none of the strains that did not produce PQQ promoted tomato growth. Furthermore, 5 to 1,000 nm of synthetic PQQ conferred a significant increase in the fresh weight of cucumber (Cucumis sativus) seedlings, confirming that PQQ is a plant growth promotion factor. Treatment of cucumber leaf discs with PQQ and wild-type B16 resulted in the scavenging of reactive oxygen species and hydrogen peroxide, suggesting that PQQ acts as an antioxidant in plants.


Subject(s)
PQQ Cofactor/biosynthesis , Plant Development , Plants/drug effects , Pseudomonas fluorescens/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Hydrogen Peroxide , Molecular Sequence Data , Molecular Structure , PQQ Cofactor/chemistry , Phosphates/metabolism , Plant Leaves , Reactive Oxygen Species
3.
Mol Microbiol ; 64(1): 165-79, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17376080

ABSTRACT

The bacterium Burkholderia glumae causes rice grain rot by producing toxoflavin, whose expression is regulated by quorum sensing (QS). We report a major deviation from the current paradigm for the regulation of bacterial polar flagellum genes. The N-octanoyl homoserine lactone (C8-HSL)-deficient mutant of B. glumae is aflagellate and has lost the ability to swim and swarm at 37 degrees C. Mutagenesis of the bacterium with the mini-Tn5rescue identified an IclR-type transcriptional regulator, called QsmR, which is important for flagellum formation. TofR, which is a cognate C8-HSL receptor, activated qsmR expression by binding directly to the qsmR promoter region. From the flagellum gene cluster, we identified flhDC homologues that are directly activated by QsmR. FlhDC in turn activates the expression of genes involved in flagellum biosynthesis, motor functions and chemotaxis in B. glumae. Non-motile qsmR, fliA and flhDC mutants produced toxoflavin, but lost pathogenicity for rice. The unexpected discovery of FlhDC in a polarly flagellate bacterium suggests that exceptions to the typical regulatory mechanisms of flagellum genes exist in Gram-negative bacteria. The finding that functional flagella play critical roles in the pathogenicity of B. glumae suggests that either QS or flagellum formation constitutes a good target for the control of rice grain rot.


Subject(s)
Bacterial Proteins/metabolism , Burkholderia/growth & development , Burkholderia/pathogenicity , Flagella/metabolism , Gene Expression Regulation, Bacterial , Oryza/microbiology , Quorum Sensing , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Base Sequence , Burkholderia/metabolism , Burkholderia/physiology , Chemotaxis , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Flagella/genetics , Molecular Sequence Data , Multigene Family , Mutation , Plant Diseases/microbiology , Trans-Activators/genetics , Trans-Activators/metabolism
4.
Planta ; 225(3): 575-88, 2007 Feb.
Article in English | MEDLINE | ID: mdl-16937017

ABSTRACT

We isolated HvRAF (Hordeum vulgare root abundant factor), a cDNA encoding a novel ethylene response factor (ERF)-type transcription factor, from young seedlings of barley. In addition to the most highly conserved APETALA2/ERF DNA-binding domain, the encoded protein contained an N-terminal MCGGAIL signature sequence, a putative nuclear localization sequence, and a C-terminal acidic transcription activation domain containing a novel mammalian hemopexin domain signature-like sequence. Their homologous sequences were found in AAK92635 from rice and RAP2.2 from Arabidopsis; the ERF proteins most closely related to HvRAF, reflecting their functional importance. RNA blot analyses revealed that HvRAF transcripts were more abundant in roots than in leaves. HvRAF expression was induced in barley seedlings by various treatment regimes such as salicylic acid, ethephon, methyl jasmonate, cellulase, and methyl viologen. In a subcellular localization assay, the HvRAF-GFP fusion protein was targeted to the nucleus. The fusion protein of HvRAF with the GAL4 DNA-binding domain strongly activated transcription in yeast. Various deletion mutants of HvRAF indicated that the transactivating activity was localized to the acidic domain of the C-terminal region, and that the hemopexin domain signature-like sequence was important for the activity. Overexpression of the HvRAF gene in Arabidopsis plants induced the activation of various stress-responsive genes, including PDF1.2, JR3, PR1, PR5, KIN2, and GSH1. Furthermore, the transgenic Arabidopsis plants showed enhanced resistance to Ralstonia solanacearum strain GMI1000, as well as seed germination and root growth tolerance to high salinity. These results collectively indicate that HvRAF is a transcription factor that plays dual regulatory roles in response to biotic and abiotic stresses in plants.


Subject(s)
Arabidopsis/genetics , Hordeum/genetics , Plant Proteins/physiology , Sodium Chloride/pharmacology , Transcription Factors/physiology , Adaptation, Physiological/drug effects , Amino Acid Sequence , Arabidopsis/drug effects , Arabidopsis/microbiology , Base Sequence , Cell Nucleus/metabolism , Gene Expression Regulation, Plant , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Molecular Sequence Data , Plant Growth Regulators/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Ralstonia solanacearum/growth & development , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Plant Dis ; 91(10): 1277-1287, 2007 Oct.
Article in English | MEDLINE | ID: mdl-30780526

ABSTRACT

Genetic diversity among 478 isolates of Ralstonia solanacearum collected from various plants in Korea between 1997 and 2005 was determined based on biovar, pathogenicity, amplified fragment length polymorphism (AFLP), 16S rRNA, endoglucanase, hrpB, and mutS gene sequence analyses. Of the isolates, 440 belonged to biovars 1, 3, or 4, and 38 belonged to biovar 2. Biovar N2 isolates were not found. The biovar 1 and 2 isolates were found mainly in southern Korea, whereas the biovar 3 and 4 isolates were widely distributed throughout all nine provinces. AFLP analysis divided the 109 representative Korean isolates into six clusters that were distinct from most of the foreign isolates. Grouping of 8 representative isolates based on their 16S rRNA gene sequences indicated that biovars 1, 3, and 4 belonged to division 1, while biovar 2 belonged to subdivision 2b. Sequence analysis of the endoglucanase, hrpB, and mutS genes from the same isolates indicated that the biovar 1, 3, and 4 isolates belonged to phylotype I, while the biovar 2 isolate belonged to phylotype IV. This study is the first comprehensive analysis of genetic diversity among Korean isolates of R. solanacearum.

6.
Plant Dis ; 87(8): 890-895, 2003 Aug.
Article in English | MEDLINE | ID: mdl-30812790

ABSTRACT

Severe wilt symptoms similar to bacterial wilt caused by Ralstonia solanacearum were observed in tomato, hot pepper, eggplant, potato, perilla, sesame, and sunflower in 2000 and 2001 in Korea. From diseased crops at 65 different locations, we obtained 106 isolates that produced green pigment on CPG medium; 36 were isolated from discolored rice panicles. The causal pathogen was identified as Burkholderia glumae based on its biochemical characteristics, fatty acid methyl ester analysis, and 16S rRNA gene sequence. Nine representative isolates produced toxoflavin, as determined by electrospray ionization mass spectrometry using a direct inlet system and TLC analyses, and caused bacterial wilt on tomato, sesame, perilla, eggplant, and hot pepper. However, BGR12, a wild-type isolate lacking toxoflavin production and toxoflavin-deficient mutants generated by Tn5lacZ failed to cause bacterial wilt on those five field crops. Cells of B. glumae and synthetic toxoflavin caused wilt symptoms on field crops, demonstrating a lack of host specificity. Synthetic toxoflavin caused wilt symptoms on tomato, sesame, perilla, eggplant, and hot pepper at 10 µg/ml concentration 1 day after treatment. This is the first report of bacterial wilt on various crops caused by B. glumae, and our results clearly demonstrate that toxoflavin is a key factor in wilt symptom development.

SELECTION OF CITATIONS
SEARCH DETAIL
...