Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 13(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38003205

ABSTRACT

Accurate identification of individual cattle is of paramount importance in precision livestock farming, enabling the monitoring of cattle behavior, disease prevention, and enhanced animal welfare. Unlike human faces, the faces of most Hanwoo cattle, a native breed of Korea, exhibit significant similarities and have the same body color, posing a substantial challenge in accurately distinguishing between individual cattle. In this study, we sought to extend the closed-set scope (only including identifying known individuals) to a more-adaptable open-set recognition scenario (identifying both known and unknown individuals) termed Cattle's Face Open-Set Recognition (CFOSR). By integrating open-set techniques to enhance the closed-set accuracy, the proposed method simultaneously addresses the open-set scenario. In CFOSR, the objective is to develop a trained model capable of accurately identifying known individuals, while effectively handling unknown or novel individuals, even in cases where the model has been trained solely on known individuals. To address this challenge, we propose a novel approach that integrates Adversarial Reciprocal Points Learning (ARPL), a state-of-the-art open-set recognition method, with the effectiveness of Additive Margin Softmax loss (AM-Softmax). ARPL was leveraged to mitigate the overlap between spaces of known and unknown or unregistered cattle. At the same time, AM-Softmax was chosen over the conventional Cross-Entropy loss (CE) to classify known individuals. The empirical results obtained from a real-world dataset demonstrated the effectiveness of the ARPL and AM-Softmax techniques in achieving both intra-class compactness and inter-class separability. Notably, the results of the open-set recognition and closed-set recognition validated the superior performance of our proposed method compared to existing algorithms. To be more precise, our method achieved an AUROC of 91.84 and an OSCR of 87.85 in the context of open-set recognition on a complex dataset. Simultaneously, it demonstrated an accuracy of 94.46 for closed-set recognition. We believe that our study provides a novel vision to improve the classification accuracy of the closed set. Simultaneously, it holds the potential to significantly contribute to herd monitoring and inventory management, especially in scenarios involving the presence of unknown or novel cattle.

2.
Front Plant Sci ; 14: 1243822, 2023.
Article in English | MEDLINE | ID: mdl-37849839

ABSTRACT

Plant disease detection has made significant strides thanks to the emergence of deep learning. However, existing methods have been limited to closed-set and static learning settings, where models are trained using a specific dataset. This confinement restricts the model's adaptability when encountering samples from unseen disease categories. Additionally, there is a challenge of knowledge degradation for these static learning settings, as the acquisition of new knowledge tends to overwrite the old when learning new categories. To overcome these limitations, this study introduces a novel paradigm for plant disease detection called open-world setting. Our approach can infer disease categories that have never been seen during the model training phase and gradually learn these unseen diseases through dynamic knowledge updates in the next training phase. Specifically, we utilize a well-trained unknown-aware region proposal network to generate pseudo-labels for unknown diseases during training and employ a class-agnostic classifier to enhance the recall rate for unknown diseases. Besides, we employ a sample replay strategy to maintain recognition ability for previously learned classes. Extensive experimental evaluation and ablation studies investigate the efficacy of our method in detecting old and unknown classes. Remarkably, our method demonstrates robust generalization ability even in cross-species disease detection experiments. Overall, this open-world and dynamically updated detection method shows promising potential to become the future paradigm for plant disease detection. We discuss open issues including classification and localization, and propose promising approaches to address them. We encourage further research in the community to tackle the crucial challenges in open-world plant disease detection. The code will be released at https://github.com/JiuqingDong/OWPDD.

3.
Front Plant Sci ; 14: 1234616, 2023.
Article in English | MEDLINE | ID: mdl-37621880

ABSTRACT

Recent developments in deep learning-based automatic weeding systems have shown promise for unmanned weed eradication. However, accurately distinguishing between crops and weeds in varying field conditions remains a challenge for these systems, as performance deteriorates when applied to new or different fields due to insignificant changes in low-level statistics and a significant gap between training and test data distributions. In this study, we propose an approach based on unsupervised domain adaptation to improve crop-weed recognition in new, unseen fields. Our system addresses this issue by learning to ignore insignificant changes in low-level statistics that cause a decline in performance when applied to new data. The proposed network includes a segmentation module that produces segmentation maps using labeled (training field) data while also minimizing entropy using unlabeled (test field) data simultaneously, and a discriminator module that maximizes the confusion between extracted features from the training and test farm samples. This module uses adversarial optimization to make the segmentation network invariant to changes in the field environment. We evaluated the proposed approach on four different unseen (test) fields and found consistent improvements in performance. These results suggest that the proposed approach can effectively handle changes in new field environments during real field inference.

4.
Front Plant Sci ; 13: 1010981, 2022.
Article in English | MEDLINE | ID: mdl-36507376

ABSTRACT

Deep learning has witnessed a significant improvement in recent years to recognize plant diseases by observing their corresponding images. To have a decent performance, current deep learning models tend to require a large-scale dataset. However, collecting a dataset is expensive and time-consuming. Hence, the limited data is one of the main challenges to getting the desired recognition accuracy. Although transfer learning is heavily discussed and verified as an effective and efficient method to mitigate the challenge, most proposed methods focus on one or two specific datasets. In this paper, we propose a novel transfer learning strategy to have a high performance for versatile plant disease recognition, on multiple plant disease datasets. Our transfer learning strategy differs from the current popular one due to the following factors. First, PlantCLEF2022, a large-scale dataset related to plants with 2,885,052 images and 80,000 classes, is utilized to pre-train a model. Second, we adopt a vision transformer (ViT) model, instead of a convolution neural network. Third, the ViT model undergoes transfer learning twice to save computations. Fourth, the model is first pre-trained in ImageNet with a self-supervised loss function and with a supervised loss function in PlantCLEF2022. We apply our method to 12 plant disease datasets and the experimental results suggest that our method surpasses the popular one by a clear margin for different dataset settings. Specifically, our proposed method achieves a mean testing accuracy of 86.29over the 12 datasets in a 20-shot case, 12.76 higher than the current state-of-the-art method's accuracy of 73.53. Furthermore, our method outperforms other methods in one plant growth stage prediction and the one weed recognition dataset. To encourage the community and related applications, we have made public our codes and pre-trained model.

5.
Front Plant Sci ; 13: 989304, 2022.
Article in English | MEDLINE | ID: mdl-36172552

ABSTRACT

Predicting plant growth is a fundamental challenge that can be employed to analyze plants and further make decisions to have healthy plants with high yields. Deep learning has recently been showing its potential to address this challenge in recent years, however, there are still two issues. First, image-based plant growth prediction is currently taken either from time series or image generation viewpoints, resulting in a flexible learning framework and clear predictions, respectively. Second, deep learning-based algorithms are notorious to require a large-scale dataset to obtain a competing performance but collecting enough data is time-consuming and expensive. To address the issues, we consider the plant growth prediction from both viewpoints with two new time-series data augmentation algorithms. To be more specific, we raise a new framework with a length-changeable time-series processing unit to generate images flexibly. A generative adversarial loss is utilized to optimize our model to obtain high-quality images. Furthermore, we first recognize three key points to perform time-series data augmentation and then put forward T-Mixup and T-Copy-Paste. T-Mixup fuses images from a different time pixel-wise while T-Copy-Paste makes new time-series images with a different background by reusing individual leaves extracted from the existing dataset. We perform our method in a public dataset and achieve superior results, such as the generated RGB images and instance masks securing an average PSNR of 27.53 and 27.62, respectively, compared to the previously best 26.55 and 26.92.

6.
Sensors (Basel) ; 17(9)2017 Sep 18.
Article in English | MEDLINE | ID: mdl-28927019

ABSTRACT

In this paper, we examine the robust beamforming design to tackle the energy efficiency (EE) maximization problem in a 5G massive multiple-input multiple-output (MIMO)-non-orthogonal multiple access (NOMA) downlink system with imperfect channel state information (CSI) at the base station. A novel joint user pairing and dynamic power allocation (JUPDPA) algorithm is proposed to minimize the inter user interference and also to enhance the fairness between the users. This work assumes imperfect CSI by adding uncertainties to channel matrices with worst-case model, i.e., ellipsoidal uncertainty model (EUM). A fractional non-convex optimization problem is formulated to maximize the EE subject to the transmit power constraints and the minimum rate requirement for the cell edge user. The designed problem is difficult to solve due to its nonlinear fractional objective function. We firstly employ the properties of fractional programming to transform the non-convex problem into its equivalent parametric form. Then, an efficient iterative algorithm is proposed established on the constrained concave-convex procedure (CCCP) that solves and achieves convergence to a stationary point of the above problem. Finally, Dinkelbach's algorithm is employed to determine the maximum energy efficiency. Comprehensive numerical results illustrate that the proposed scheme attains higher worst-case energy efficiency as compared with the existing NOMA schemes and the conventional orthogonal multiple access (OMA) scheme.

SELECTION OF CITATIONS
SEARCH DETAIL
...