Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 32(40): 405607, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32570228

ABSTRACT

NiO thin films with various strains were grown on SrTiO3 (STO) and MgO substrates using a pulsed laser deposition technique. The films were characterized using an x-ray diffraction, atomic force microscopy, and infrared reflectance spectroscopy. The films grown on STO (001) substrate show a compressive in-plane strain which increases as the film thickness is reduced resulting in an increase of the NiO phonon frequency. On the other hand, a tensile strain was detected in the NiO film grown on MgO (001) substrate which induces a softening of the phonon frequency. Overall, the variation of in-plane strain from -0.36% (compressive) to 0.48% (tensile) yields the decrease of the phonon frequency from 409.6 cm-1 to 377.5 cm-1 which occurs due to the ∼1% change of interatomic distances. The magnetic exchange-driven phonon splitting Δω in three different samples, with relaxed (i.e. zero) strain, 0.36% compressive strain and 0.48% tensile strain, was measured as a function of temperature. The Δω increases on cooling in NiO relaxed film as in the previously published work on a bulk crystal. The splitting increases on cooling also in 0.48% tensile strained film, but Δω is systematically 3-4 cm-1 smaller than in relaxed film. Since the phonon splitting is proportional to the non-dominant magnetic exchange interaction J 1, the reduction of phonon splitting in tensile-strained film was explained by a diminishing of J 1 with lattice expansion. Increase of Δω on cooling can be also explained by rising of J 1 with reduced temperature.

2.
Nat Mater ; 16(11): 1096-1099, 2017 11.
Article in English | MEDLINE | ID: mdl-28805826

ABSTRACT

Ohm's law is a fundamental paradigm in the electrical transport of metals. Any transport signatures violating Ohm's law would give an indisputable fingerprint for a novel metallic state. Here, we uncover the breakdown of Ohm's law owing to a topological structure of the chiral anomaly in the Weyl metal phase. We observe nonlinear I-V characteristics in Bi0.96Sb0.04 single crystals in the diffusive limit, which occurs only for a magnetic-field-aligned electric field (E∥B). The Boltzmann transport theory with the charge pumping effect reveals the topological-in-origin nonlinear conductivity, and it leads to a universal scaling function of the longitudinal magnetoconductivity, which completely describes our experimental results. As a hallmark of Weyl metals, the nonlinear conductivity provides a venue for nonlinear electronics, optical applications, and the development of a topological Fermi-liquid theory beyond the Landau Fermi-liquid theory.

3.
Nanotechnology ; 23(13): 135602, 2012 Apr 06.
Article in English | MEDLINE | ID: mdl-22417811

ABSTRACT

Vertically aligned nanowires and highly uniform nanoporous array thin films of PbTiO(3) are synthesized by varying anodic oxidation conditions of Ti foil followed by hydrothermal reaction in an aqueous Pb(II) acetate trihydrate solution. As-synthesized samples have single crystalline nanowire structure and polycrystalline nanoporous structure, although both are pure PbTiO(3) with a tetragonal phase. The structure of intermediate TiO(2) films obtained from different anodic oxidation conditions determines the structure of the product PbTiO(3). The relationships between these morphological structures and ferroelectric properties are investigated. Piezoresponse force microscopy reveals that both these films show ferroelectricity with clear phase contrast and well-defined hysteresis loops. The saturated longitudinal piezoelectric coefficient field (E(c)) of the nanowire sample is smaller than that of nanoporous thin film. Thus, polarization of nanowire thin film is larger in magnitude and easier to flip than that of nanoporous film.

4.
Nat Commun ; 2: 567, 2011 Nov 29.
Article in English | MEDLINE | ID: mdl-22127063

ABSTRACT

Strong spin-lattice coupling in condensed matter gives rise to intriguing physical phenomena such as colossal magnetoresistance and giant magnetoelectric effects. The phenomenological hallmark of such a strong spin-lattice coupling is the manifestation of a large anomaly in the crystal structure at the magnetic transition temperature. Here we report that the magnetic Néel temperature of the multiferroic compound BiFeO(3) is suppressed to around room temperature by heteroepitaxial misfit strain. Remarkably, the ferroelectric state undergoes a first-order transition to another ferroelectric state simultaneously with the magnetic transition temperature. Our findings provide a unique example of a concurrent magnetic and ferroelectric transition at the same temperature among proper ferroelectrics, taking a step toward room temperature magnetoelectric applications.


Subject(s)
Electricity , Ferric Compounds/chemistry , Magnetics , Temperature
5.
J Am Chem Soc ; 130(41): 13522-3, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18808121

ABSTRACT

We report the room-temperature ferromagnetism in transition metals (Co, Ni)-doped 8-hydroxy-quinoline aluminum (Alq3) by thermal coevaporation of high purity metal and Alq3 powders. For 5% Co-doped Alq3, a maximum magnetization of approximately 0.33 microB/Co at 10 K was obtained and ferromagnetic behavior was observed up to 300 K. The Co atoms interact chemically with O atoms and provide electrons to Alq3, forming new states acting as electron trap sites. From this, it is suggested that ferromagnetism may be associated with the strong chemical interaction of Co atoms and Alq3 molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...