Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.351
Filter
1.
Bioact Mater ; 40: 306-317, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38978806

ABSTRACT

Osteochondral tissue is a highly specialized and complex tissue composed of articular cartilage and subchondral bone that are separated by a calcified cartilage interface. Multilayered or gradient scaffolds, often in conjunction with stem cells and growth factors, have been developed to mimic the respective layers for osteochondral defect repair. In this study, we designed a hyaline cartilage-hypertrophic cartilage bilayer graft (RGD/RGDW) with chondrocytes. Previously, we demonstrated that RGD peptide-modified chondroitin sulfate cryogel (RGD group) is chondro-conductive and capable of hyaline cartilage formation. Here, we incorporated whitlockite (WH), a Mg2+-containing calcium phosphate, into RGD cryogel (RGDW group) to induce chondrocyte hypertrophy and form collagen X-rich hypertrophic cartilage. This is the first study to use WH to produce hypertrophic cartilage. Chondrocytes-laden RGDW cryogel exhibited significantly upregulated expression of hypertrophy markers in vitro and formed ectopic hypertrophic cartilage in vivo, which mineralized into calcified cartilage in bone microenvironment. Subsequently, RGD cryogel and RGDW cryogel were combined into bilayer (RGD/RGDW group) and implanted into rabbit osteochondral defect, where RGD layer supports hyaline cartilage regeneration and bioceramic-containing RGDW layer promotes calcified cartilage formation. While the RGD group (monolayer) formed hyaline-like neotissue that extends into the subchondral bone, the RGD/RGDW group (bilayer) regenerated hyaline cartilage tissue confined to its respective layer and promoted osseointegration for integrative defect repair.

2.
Front Pharmacol ; 15: 1412188, 2024.
Article in English | MEDLINE | ID: mdl-38948466

ABSTRACT

The management of neurological disorders heavily relies on neurotherapeutic drugs, but notable concerns exist regarding their possible negative effects on reproductive health. Traditional preclinical models often fail to accurately predict reprotoxicity, highlighting the need for more physiologically relevant systems. Organoid models represent a promising approach for concurrently studying neurotoxicity and reprotoxicity, providing insights into the complex interplay between neurotherapeutic drugs and reproductive systems. Herein, we have examined the molecular mechanisms underlying neurotherapeutic drug-induced reprotoxicity and discussed experimental findings from case studies. Additionally, we explore the utility of organoid models in elucidating the reproductive complications of neurodrug exposure. Have discussed the principles of organoid models, highlighting their ability to recapitulate neurodevelopmental processes and simulate drug-induced toxicity in a controlled environment. Challenges and future perspectives in the field have been addressed with a focus on advancing organoid technologies to improve reprotoxicity assessment and enhance drug safety screening. This review underscores the importance of organoid models in unraveling the complex relationship between neurotherapeutic drugs and reproductive health.

3.
Article in English | MEDLINE | ID: mdl-38917652

ABSTRACT

Dried Blood Spots (DBS) revolutionize therapeutic drug monitoring using LC-MS for the precise quantification of cardiovascular drugs (CDs), enabling personalized treatment adapted to patient-specific pharmacokinetics with minimal invasiveness. This study aims to achieve simultaneous quantification of eight CDs in DBS, overcoming physicochemical challenges. A two-step protein precipitation method was used for simple and precise sample preparation. The drugs were analyzed using LC-MS/MS in ESI positive-ion mode, showing high sensitivity and linearity, with a correlation coefficient (r2) exceeding 0.999, after being separated on a reversed-phase chromatography by gradient elution of DW-acetonitrile containing 0.1 % formic acid + 2 mM ammonium formate. The validation results indicate good selectivity, with no observed matrix effect and carry-over. The intra- and inter-day accuracy and precision were within 6 % for most drugs, except for digoxin and deslanoside at low therapeutic levels where the variation was within 20 %. Stability tests confirmed suitable DBS handling and storage conditions, indicating drug stability for at least 30 days at room temperature. The analysis of whole spot has demonstrated remarkable precision and reliability in all target drugs. The analysis of 3 mm internal diameter discs, punched in and out of DBS, presumed to contain 3 µL of blood, showed acceptable accuracy for most drugs, with less polar drugs like digoxin and deslanoside showing lower accuracy, indicating a need for further correction due to non-uniform drug distribution. Consequently, the developed LC-MS/MS method enables the quantification of multiple CDs in a single DBS analysis, while suggesting the potential for accuracy-based analysis.


Subject(s)
Cardiovascular Agents , Dried Blood Spot Testing , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Dried Blood Spot Testing/methods , Humans , Reproducibility of Results , Linear Models , Chromatography, Liquid/methods , Cardiovascular Agents/blood , Cardiovascular Agents/pharmacokinetics , Limit of Detection , Drug Monitoring/methods
4.
Mol Cells ; 47(7): 100074, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901530

ABSTRACT

Although binge alcohol-induced gut leakage has been studied extensively in the context of reactive oxygen species-mediated signaling, it was recently revealed that post-transcriptional regulation plays an essential role as well. Ethanol (EtOH)-inducible cytochrome P450-2E1 (CYP2E1), a key enzyme in EtOH metabolism, promotes alcohol-induced hepatic steatosis and inflammatory liver disease, at least in part by mediating changes in intestinal permeability. For instance, gut leakage and elevated intestinal permeability to endotoxins have been shown to be regulated by enhancing CYP2E1 mRNA and CYP2E1 protein levels. Although it is understood that EtOH promotes CYP2E1 induction and activation, the mechanisms that regulate CYP2E1 expression in the context of intestinal damage remain poorly defined. Specific miRNAs, including miR-132, miR-212, miR-378, and miR-552, have been shown to repress the expression of CYP2E1, suggesting that these miRNAs contribute to EtOH-induced intestinal injury. Here, we have shown that CYP2E1 expression is regulated post-transcriptionally through miRNA-mediated degradation, as follows: (1) the RNA-binding protein AU-binding factor 1 (AUF1) binds mature miRNAs, including CYP2E1-targeting miRNAs, and this binding modulates the degradation of corresponding target mRNAs upon EtOH treatment; (2) the serine/threonine kinase mammalian Ste20-like kinase 1 (MST1) mediates oxidative stress-induced phosphorylation of AUF1. Those findings suggest that reactive oxygen species-mediated signaling modulates AUF1/miRNA interaction through MST1-mediated phosphorylation. Thus, our study demonstrates the critical functions of AUF1 phosphorylation by MST1 in the decay of miRNAs targeting CYP2E1, the stabilization of CYP2E1 mRNA in the presence of EtOH, and the relationship of this pathway to subsequent intestinal injury.

5.
Article in English | MEDLINE | ID: mdl-38941194

ABSTRACT

Sleep quality is an essential parameter of a healthy human life, while sleep disorders such as sleep apnea are abundant. In the investigation of sleep and its malfunction, the gold-standard is polysomnography, which utilizes an extensive range of variables for sleep stage classification. However, undergoing full polysomnography, which requires many sensors that are directly connected to the heaviness of the setup and the discomfort of sleep, brings a significant burden. In this study, sleep stage classification was performed using the single dimension of nasal pressure, dramatically decreasing the complexity of the process. In turn, such improvements could increase the much needed clinical applicability. Specifically, we propose a deep learning structure consisting of multi-kernel convolutional neural networks and bidirectional long short-term memory for sleep stage classification. Sleep stages of 25 healthy subjects were classified into 3-class (wake, rapid eye movement (REM), and non-REM) and 4-class (wake, REM, light, and deep sleep) based on nasal pressure. Following a leave-one-subject-out cross-validation, in the 3-class the accuracy was 0.704, the F1-score was 0.490, and the kappa value was 0.283 for the overall metrics. In the 4-class, the accuracy was 0.604, the F1-score was 0.349, and the kappa value was 0.217 for the overall metrics. This was higher than the four comparative models, including the class-wise F1-score. This result demonstrates the possibility of a sleep stage classification model only using easily applicable and highly practical nasal pressure recordings. This is also likely to be used with interventions that could help treat sleep-related diseases.

6.
Perioper Med (Lond) ; 13(1): 56, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877533

ABSTRACT

BACKGROUND: Remimazolam is a short-acting benzodiazepine newly approved for the induction and maintenance of general anesthesia. Remimazolam emerges as an ideal drug for the neurosurgical population due to its rapid emergence, enabling early neurological assessment, and its ability to maintain perfusion pressure, which is crucial for preventing cerebral ischemia. However, the use of benzodiazepine has been associated with an increased risk of postoperative delirium (POD). There is currently limited evidence about the relationship between remimazolam-based total intravenous anesthesia (TIVA) and POD. METHODS: In this double-blind, randomized, non-inferiority trial, we plan to include 696 adult patients with American Society of Anesthesiologists physical status class I to III, undergoing elective neurovascular surgery under general anesthesia. After informed consent, the patients will be randomized to receive either remimazolam or propofol-based TIVA with a 1:1 ratio. The primary outcome is the incidence of POD within 5 days after surgery. Secondary outcomes include subtypes, number of positive assessments and severity of POD, emergence agitation, intraoperative awareness and undesirable patient movement, intraoperative hypotension, and postoperative cognitive function. The data will be analyzed in modified intention to treat. DISCUSSION: This trial will evaluate the effect of remimazolam on the development of POD compared to propofol anesthesia. The results of this trial will provide evidence regarding the choice of optimal anesthetics to minimize the risk of POD in neurosurgical patients. TRIAL REGISTRATION: The study protocol was prospectively registered at the Clinical trials ( https://clinicaltrials.gov , NCT06115031, principal investigator: Jiseon Jeong; date of first registration: November 2, 2023, before the recruitment of the first participant.

7.
Medicine (Baltimore) ; 103(23): e38446, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847683

ABSTRACT

BACKGROUND: Stair-climbing (SC) is an essential daily life skill, and stair-climbing exercise (SCE) serves as a valuable method for promoting physical activity in older adults. This study aimed to compare the impact of SCEs with heel contact (HC) and heel off (HO) during SC on functional mobility and trunk muscle (TM) activation amplitudes in community-dwelling older adults. METHODS: In the pilot randomized controlled trial, participants were randomly allocated to either the HC group (n = 17; mean age 75.9 ± 6.3 years) or the HO group (n = 17; mean age 76.5 ± 4.6 years). The HC participants performed SCE with the heel of the ankle in contact with the ground, while the HO participants performed SCE with the heel of the ankle off the ground during SC. Both groups participated in progressive SCE for one hour per day, three days per week, over four consecutive weeks (totaling 12 sessions) at the community center. We measured timed stair-climbing (TSC), timed up and go (TUG), and electromyography (EMG) amplitudes of the TMs including rectus abdominis (RA), external oblique (EO), transverse abdominus and internal oblique abdominals (TrA-IO), and erector spinae (ES) during SC before and after the intervention. RESULTS: Both groups showed a significant improvement in TSC and TUG after the intervention (P < .01, respectively), with no significant difference between the groups. There was no significant difference in the EMG activity of the TMs between the groups after the intervention. The amplitude of TMs significantly decreased after the intervention in both groups (P < .01, respectively). CONCLUSION: Both SCE methods could improve balance and SC ability in older adults while reducing the recruitment of TMs during SC. Both SCE strategies are effective in improving functional mobility and promoting appropriate posture control during SC in older adults.


Subject(s)
Electromyography , Independent Living , Stair Climbing , Humans , Aged , Male , Pilot Projects , Female , Stair Climbing/physiology , Aged, 80 and over , Torso/physiology , Muscle, Skeletal/physiology
8.
Clin Oral Investig ; 28(7): 365, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849637

ABSTRACT

OBJECTIVES: Currently, premixed putty-type bioceramic cements (PPBCs) have become popular materials for root-end fillings. This study investigated three root-end filling techniques using PPBCs and calcium silicate-based sealers including EDTA pretreatment. MATERIALS AND METHODS: Ninety root segments were prepared and standardized with an artificial fin and lateral canal, and assigned to three groups (n = 30). Root-end fillings were placed using BC-RRM Putty alone (Group PA), injection of BC sealer followed by BC-RRM Putty (Lid Technique: Group LT) or BC-RRM Putty with BC sealer coating (Deep putty packing technique: Group DP). Half of each group was pretreated with 17% EDTA. The radiographic images of the specimens were assessed by five graders and push-out bond strength tests were conducted. The data were analyzed with a general linear model including two-way ANOVA and chi-square test at a significance level of 5%. RESULTS: DP approach demonstrated significantly higher bond strength than LT (P < 0.05). However, there was no statistically significant difference in bond strength between PA and either DP or LT. EDTA pretreatment had no significant effect on push-out bond strength. Radiographically, for the main canal, PA and DP scored significantly higher than LT. In the fin, PA scored significantly higher than others (P < 0.05). CONCLUSION: Our study highlights variations in root-end filling techniques. Injecting a bulk of bioceramic sealer before the placement of PPBCs may reduce bond strength and radiopacity. The application of PPBCs alone or in the deep putty technique demonstrates potential for favorable outcomes. EDTA pretreatment did not enhance bond-strength. CLINICAL RELEVANCE: Careful selection and application of bioceramic materials and techniques in root-end fillings may influence the outcome of endodontic root-end surgery. When PPBCs and calcium silicate-based sealers are used together for root-end fillings, sealer followed by deep putty application may offer improved bond strength and radiographic fill compared to the lid technique.


Subject(s)
Calcium Compounds , Materials Testing , Root Canal Filling Materials , Silicates , Root Canal Filling Materials/chemistry , Silicates/chemistry , Calcium Compounds/chemistry , In Vitro Techniques , Humans , Dental Bonding/methods , Ceramics/chemistry , Dental Cements/chemistry , Retrograde Obturation/methods , Edetic Acid/chemistry , Dental Stress Analysis
9.
Reprod Toxicol ; 128: 108628, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38848930

ABSTRACT

Bisphenol A (BPA), a widespread environmental contaminant, poses concerns due to its disruptive effects on physiological functions of the uterine endometrium. In contrast, melatonin (MT) and Resveratrol (RSV) are under scrutiny for their potential protective roles against BPA-induced damage. For the efficacy and ethical concerns in the animal test, endometrial organoids, three-dimensional models mimicking endometrium, serve as crucial tools for unraveling the impact of environmental factors on reproductive health. This study aimed to comprehensively characterize the morphological, molecular and metabolic responses of porcine endometrial organoids to BPA and assess the potential protective effects of MT and RSV. Porcine uteri were prepared, digested with collagenase, mixed with Matrigel, and incubated at 38°C with 5 % CO2. Passaging involved dissociation through trypsin-EDTA treatment and subculturing. The culture medium was refreshed every 2-3 days. To investigate the environmental impact on reproductive health, endometrial organoids were treated with BPA (0.5 µM), MT (with/without BPA at 0.1 µM), and/or RSV (10 µM). Various molecular screening using gene expression, western blotting, immunofluorescence staining, and metabolites profiling were assessed the effects of BPA, MT, and RSV in terms of cell viability, morphology, reproductivity, and metabolism alteration in the endometrial organoids. As expected, BPA induced structural and molecular disruptions in organoids, affecting cytoskeletal proteins, Wnt/ß-catenin signaling, and epithelial/mesenchymal markers. It triggered oxidative stress and apoptotic pathways, altered miRNA expression, and disrupted the endocannabinoid system. The level of glucose, galactose, and essential amino acids were increased or decreased by approximately 1.5-3 times in BPA-treated groups compared to the control groups (p-value < 0.05), indicating metabolic changes. Moreover, MT and RSV treated groups exhibited protective effects, mitigating BPA-induced disruptions across multiple pathways. For the first time, our study models endometrial organoids, advancing understanding of environmental impacts on reproductive health.

10.
PLoS One ; 19(5): e0285655, 2024.
Article in English | MEDLINE | ID: mdl-38753593

ABSTRACT

BACKGROUND: Chronic rhinosinusitis (CRS) is an inflammatory disease affecting the sinuses or nose. Persistent inflammatory responses can lead to tissue remodeling, which is a pathological characteristics of CRS. Activation of fibroblasts in the nasal mucosal stroma, differentiation and collagen deposition, and subepithelial fibrosis have been associated with CRS. OBJECTIVES: We aimed to assess the inhibitory effects of doxycycline and deoxycholic acid-polyethyleneimine conjugate (DA3-Doxy) on myofibroblast differentiation and extracellular matrix (ECM) production in nasal fibroblasts stimulated with TGF-ß1. METHODS: To enhance efficacy, we prepared DA3-Doxy using a conjugate of low-molecular-weight polyethyleneimine (PEI) (MW 1800) and deoxycholic acid (DA) and Doxy. The synthesis of the DA3-Doxy polymer was confirmed using nuclear magnetic resonance, and the critical micelle concentration required for cationic micelle formation through self-assembly was determined. Subsequently, the Doxy loading efficiency of DA3 was assessed. The cytotoxicity of Doxy, DA3, PEI, and DA-Doxy in nasal fibroblasts was evaluated using the WST-1 assay. The anti-tissue remodeling and anti-inflammatory effects of DA3-Doxy and DA3 were examined using real-time polymerase chain reaction (Real-time PCR), immunocytochemistry, western blot, and Sircol assay. RESULTS: Both DA3 and DA3-Doxy exhibited cytotoxicity at 10 µg/ml in nasal fibroblasts. Doxy partially inhibited α-smooth muscle actin, collagen types I and III, and fibronectin. However, DA3-Doxy significantly inhibited α-SMA, collagen types I and III, and fibronectin at 5 µg/ml. DA3-Doxy also modulated TGF-ß1-induced changes in the expression of MMP 1, 2, and 9. Nonetheless, TGF-ß1-induced expression of MMP3 was further increased by DA3-Doxy. The expression of TIMP 1 and 2 was partially reduced with 5 µg/ml DA3-Doxy. CONCLUSIONS: Although initially developed for the delivery of genetic materials or drugs, DA3 exhibits inhibitory effects on myofibroblast differentiation and ECM production. Therefore, it holds therapeutic potential for CRS, and a synergistic effect can be expected when loaded with CRS treatment drugs.


Subject(s)
Cell Differentiation , Deoxycholic Acid , Doxycycline , Fibroblasts , Polyethyleneimine , Humans , Polyethyleneimine/chemistry , Polyethyleneimine/pharmacology , Deoxycholic Acid/chemistry , Deoxycholic Acid/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Cell Differentiation/drug effects , Doxycycline/pharmacology , Doxycycline/chemistry , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Transforming Growth Factor beta1/metabolism , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Nasal Mucosa/drug effects , Nasal Mucosa/metabolism , Nasal Mucosa/cytology , Actins/metabolism
11.
Article in English | MEDLINE | ID: mdl-38752999

ABSTRACT

A bacterial strain designated MMS21-TAE1-1T, capable of degrading paraoxon, was isolated from red pepper soil (36° 25' 26.0″ N, 126° 25' 47.0″ E) and subjected to polyphasic taxonomic characterisation. MMS21-TAE1-1T was an aerobic, non-motile and Gram-stain-positive bacterium. MMS21-TAE1-1T showed growth at 10-37 °C (optimum, 30 °C), at pH 4-10 (optimum, pH 7) and in the presence of 0-6 % NaCl (optimum, 0 %). On the basis of the results of 16S rRNA gene sequence analysis, MMS21-TAE1-1T could be assigned to the genus Paenarthrobacter and shared the highest sequence similarities with Paenarthrobacter aurescens NBRC 12136T (99.72 %), then with Paenarthrobacter nitroguajacolicus G2-1T (99.65 %) and Paenarthrobacter ilicis DSM 20138T (99.17 %). However, the results of genome-based comparison using orthologous average nucleotide identity (orthoANI) and digital DNA-DNA hybridisation indicated that MMS21-TAE1-1T could be readily distinguished from all species of the genus with validly published names. The predominant menaquinone of MMS21-TAE1-1T was MK-9(H2). The diagnostic polar lipids were diphosphatidylglycerol and phosphatidylinositol, and unidentified glycolipids were also present. The major fatty acids were anteiso-C15 : 0, anteiso-C17 : 0, iso-C16 : 0 and iso-C15 : 0. The chemotaxonomic properties of MMS21-TAE1-1T were generally consistent with those of members of the genus Paenarthrobacter. The genome of MMS21-TAE1-1T contained genes related to degradation of aromatic compounds. It is evident from the results of this study that strain MMS21-TAE1-1T merits recognition as representing a novel species of the genus Paenarthrobacter, for which the name Paenarthrobacter aromaticivorans sp. nov. is proposed. The type strain is MMS21-TAE1-1T (=KCTC 49652T = LMG 32368T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Vitamin K 2/analogs & derivatives , Capsicum/microbiology
12.
Article in English | MEDLINE | ID: mdl-38761469

ABSTRACT

This study aims to establish an LC-MS/MS method to simultaneously analyze 11 antiepileptic drugs with a particular focus on maintaining accuracy while reducing the number of isotope-labeled internal standards employed for cost-effectiveness. By applying a water/acetonitrile gradient elution containing 0.1 % formic acid and 2 mM ammonium formate as the mobile phase, optimal sensitivity for the target drugs could be obtained in positive ESI mode in LC-MS/MS. After optimizing various extraction techniques, extraction with 70 % acetonitrile was selected as it provided good recoveries (>93 %) for all targets without matrix effects. Accuracies within 3 % were achieved from the combination of six internal standards, while accuracies of 5 % and 10 % were obtained by reducing the number of internal standards to four and two, respectively, for more economical analysis. The accuracy of the established method was maintained in hyperglycemia, hyperlipidemia, and hyperalbuminemia sera, suggesting that it can be successfully applied to individual serum samples with various properties.


Subject(s)
Anticonvulsants , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Anticonvulsants/blood , Anticonvulsants/analysis , Humans , Reproducibility of Results , Chromatography, Liquid/methods , Linear Models , Limit of Detection , Isotope Labeling/methods , Liquid Chromatography-Mass Spectrometry
13.
Redox Biol ; 73: 103193, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781728

ABSTRACT

Obesity is associated with an increased incidence of asthma. However, the mechanisms underlying this association are not fully understood. In this study, we investigated the role of thioredoxin-interacting protein (TXNIP) in obesity-induced asthma. Asthma was induced by intranasal injection of a protease from Aspergillus oryzae in normal diet (ND)- or high fat diet (HFD)-fed mice to investigate the symptoms. We measured TXNIP expression in the lungs of patients with asthma and in ND or HFD asthmatic mice. To explore the role of TXNIP in asthma pathogenesis, we induced asthma in the same manner in alveolar type 2 cell-specific TXNIP deficient (TXNIPCre) mice. In addition, the expression levels of pro-inflammatory cytokines were compared based on TXNIP gene expression in A549 cells stimulated with recombinant human tumor necrosis factor alpha. Compared to ND-fed mice, HFD-fed mice had elevated levels of free fatty acids and adipokines, resulting in high reactive oxygen species levels and more severe asthma symptoms. TXNIP expression was increased in both, asthmatic patients and HFD asthmatic mice. However, in experiments using TXNIPCre mice, despite being TXNIP deficient, TXNIPCre mice exhibited exacerbated asthma symptoms. Consistent with this, in vitro studies showed highest expression levels of pro-inflammatory cytokines in TXNIP-silenced cells. Overall, our findings suggest that increased TXNIP levels in obesity-induced asthma is compensatory to protect against inflammatory responses.


Subject(s)
Asthma , Carrier Proteins , Diet, High-Fat , Obesity , Thioredoxins , Animals , Asthma/metabolism , Asthma/etiology , Asthma/pathology , Asthma/genetics , Mice , Humans , Obesity/metabolism , Obesity/genetics , Obesity/etiology , Carrier Proteins/metabolism , Carrier Proteins/genetics , Diet, High-Fat/adverse effects , Thioredoxins/metabolism , Thioredoxins/genetics , Alveolar Epithelial Cells/metabolism , Reactive Oxygen Species/metabolism , Cytokines/metabolism , Disease Models, Animal , Male , A549 Cells , Mice, Knockout
14.
J Ginseng Res ; 48(3): 333-340, 2024 May.
Article in English | MEDLINE | ID: mdl-38707647

ABSTRACT

Background: Korean red ginseng (KRG) is a product from ginseng roots, which is enriched with ginsenosides and has been utilized for a long time as an adaptogen to alleviate various physiological or disease conditions. While KRG is generally considered safe, conducting a thorough toxicological assessment of the spray-dried powder G1899 during the juvenile period is essential to establish its safety profile. This study aimed to assess the safety of G1899 during the juvenile period using Sprague-Dawley rats. Methods: Two studies were conducted separately: a juvenile toxicity study and a uterotrophic bioassay. To assess the potential toxicity at systemic, postnatal developmental, and reproductive levels, G1899 was orally gavaged once a day in post-weaning juvenile Sprague-Dawley (SD) rats at 0, 1250, 2500, or 5000 mg/kg/day. Estrogenicity was assessed by orally gavaging G1899 in immature female SD rats at 0, 2500, or 5000 mg/kg/day on postnatal days (PND) 19-21, followed by a uterotrophic bioassay. These studies were conducted in accordance with the Good Laboratory Practice (GLP) regulations and regulatory test guidelines. Results: Regarding juvenile toxicity, no abnormalities related to the G1899 treatment were observed in any group during the experiment. Moreover, no uterotrophic responses were observed in the dosed female group. Based on these results, the no observed adverse effect level (NOAEL) of G1899 was determined to be at least 5000 mg/kg/day for general systemic function, developmental/reproductive function, and estrogenic activity. Conclusion: Our results suggest that G1899 is not toxic to juveniles at doses of up to 5000 mg/kg/day.

15.
Psychiatry Investig ; 21(4): 340-351, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38695041

ABSTRACT

OBJECTIVE: This study was to examine the mediated moderation effect of mindfulness through rumination on the relationship between perceived stress and smartphone addiction. In particular, this study examined the moderating effect of mindfulness in detail by dividing it into five sub-factors. METHODS: An online self-report questionnaires were conducted on 697 participants aged 20 to 59. Finally, 681 participants (male=356, female=325) were included final analysis. Moderating effect, mediated moderating effect were verified using PROCESS macro for SPSS v3.5. RESULTS: First, perceived stress was positively related to smartphone addiction. Second, rumination mediated the relationship between perceived stress and smartphone addiction. Third, acting with awareness and nonjudging of experience, which are a sub-factor of mindfulness, moderated the relationship between perceived stress and smartphone addiction. Fourth, mindfulness facets (acting with awareness and nonjudging of experience) moderated the relationship between rumination and smartphone addiction. Finally, there was a mediated moderating effect of mindfulness facets (acting with awareness and nonjudging of experience) on the relationship between perceived stress and smartphone addiction through rumination. CONCLUSION: This research suggests the useful and specific therapeutic interventions that help lower the level of the adults' addiction on smartphones.

16.
Biochem Biophys Res Commun ; 722: 150158, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38795455

ABSTRACT

The cytokine interleukin-38 (IL-38), a recently discovered member of the IL-1 family, has been shown to regulate inflammation and improve hepatic endoplasmic reticulum stress and lipid metabolism in individuals with obesity. However, its impact on insulin signaling in skeletal muscle cells and the underlying mechanisms remain unclear. In vitro obesity models were established using palmitate treatment, and Western blot analysis was performed to assess target proteins. Commercial kits were used to measure glucose uptake in cultured myocytes. Our study showed that IL-38 treatment alleviated the impairment of insulin signaling, including IRS-1 and Akt phosphorylation, and increased glucose uptake in palmitate-treated C2C12 myocytes. Increased levels of STAT3-mediated signaling and oxidative stress were observed in these cells following palmitate treatment, and these effects were reversed by IL-38 treatment. In addition, IL-38 treatment upregulated the expression of PPARδ, SIRT1 and antioxidants. Knockdown of PPARδ or SIRT1 using appropriate siRNAs abrogated the effects of IL-38 on insulin signaling, oxidative stress, and the STAT3-dependent pathway. These results suggest that IL-38 alleviates insulin resistance by inhibiting STAT3-mediated signaling and oxidative stress in skeletal muscle cells through PPARδ/SIRT1. This study provides fundamental evidence to support the potential use of IL-38 as a safe therapeutic agent for the treatment of insulin resistance and type 2 diabetes.


Subject(s)
Hyperlipidemias , Insulin Resistance , Oxidative Stress , STAT3 Transcription Factor , Signal Transduction , Sirtuin 1 , Animals , Oxidative Stress/drug effects , Sirtuin 1/metabolism , Sirtuin 1/genetics , STAT3 Transcription Factor/metabolism , Mice , Signal Transduction/drug effects , Cell Line , Hyperlipidemias/metabolism , Hyperlipidemias/drug therapy , PPAR delta/metabolism , PPAR delta/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Interleukins/metabolism , Interleukins/genetics , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Interleukin-1/metabolism , Interleukin-1/genetics
17.
Plant Cell Rep ; 43(6): 142, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38744747

ABSTRACT

KEY MESSAGE: 111 PHD genes were newly identified in rye genome and ScPHD5's role in regulating cold tolerance and flowering time was suggested. Plant homeodomain (PHD)-finger proteins regulate the physical properties of chromatin and control plant development and stress tolerance. Although rye (Secale cereale L.) is a major winter crop, PHD-finger proteins in rye have not been studied. Here, we identified 111 PHD genes in the rye genome that exhibited diverse gene and protein sequence structures. Phylogenetic tree analysis revealed that PHDs were genetically close in monocots and diverged from those in dicots. Duplication and synteny analyses demonstrated that ScPHDs have undergone several duplications during evolution and that high synteny is conserved among the Triticeae species. Tissue-specific and abiotic stress-responsive gene expression analyses indicated that ScPHDs were highly expressed in spikelets and developing seeds and were responsive to cold and drought stress. One of these genes, ScPHD5, was selected for further functional characterization. ScPHD5 was highly expressed in the spike tissues and was localized in the nuclei of rye protoplasts and tobacco leaves. ScPHD5-overexpressing Brachypodium was more tolerant to freezing stress than wild-type (WT), with increased CBF and COR gene expression. Additionally, these transgenic plants displayed an extremely early flowering phenotype that flowered more than two weeks earlier than the WT, and vernalization genes, rather than photoperiod genes, were increased in the WT. RNA-seq analysis revealed that diverse stress response genes, including HSPs, HSFs, LEAs, and MADS-box genes, were also upregulated in transgenic plants. Our study will help elucidate the roles of PHD genes in plant development and abiotic stress tolerance in rye.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Secale , Flowers/genetics , Flowers/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Secale/genetics , Secale/physiology , Cold Temperature , Plants, Genetically Modified/genetics , Stress, Physiological/genetics , Genome, Plant/genetics , Multigene Family , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , PHD Zinc Fingers/genetics
18.
Front Immunol ; 15: 1362404, 2024.
Article in English | MEDLINE | ID: mdl-38745671

ABSTRACT

Introduction: The anti-inflammatory effect of green tea extract (GTE) has been confirmed in asthmatic mice, however, the pharmacological mechanism is not fully elucidated. Methods: To investigate the therapeutic efficacy of GTE in asthma and identify specific pathways, murine model of allergic asthma was established by ovalbumin (OVA) sensitization and the challenge for 4 weeks, with oral treatment using GTE and dexamethasone (DEX). Inflammatory cell counts, cytokines, OVA-specific IgE, airway hyperreactivity, and antioxidant markers in the lung were evaluated. Also, pulmonary histopathological analysis and western blotting were performed. In vitro, we established the model by stimulating the human airway epithelial cell line NCI-H292 using lipopolysaccharide, and treating with GTE and mitogen-activated protein kinases (MAPKs) inhibitors. Results: The GTE100 and GTE400 groups showed a decrease in airway hyperresponsiveness and the number of inflammatory cells in the bronchoalveolar lavage fluid (BALF) compared to the OVA group. GTE treatment also reduced interleukin (IL)-13, IL-5, and IL-4 levels in the BALF, and OVA-specific immunoglobulin E levels in the serum compared to those in the OVA group. GTE treatment decreased OVA-induced mucus secretion and airway inflammation. In addition, GTE suppressed the oxidative stress, and phosphorylation of MAPKs, which generally occurs after exposure to OVA. GTE administration also reduced matrix metalloproteinase-9 activity and protein levels. Conclusion: GTE effectively inhibited asthmatic respiratory inflammation and mucus hyperproduction induced by OVA inhalation. These results suggest that GTE has the potential to be used for the treatment of asthma.


Subject(s)
Asthma , Epithelial Cells , Matrix Metalloproteinase 9 , Oxidative Stress , Plant Extracts , Animals , Female , Humans , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Asthma/drug therapy , Asthma/immunology , Asthma/metabolism , Cytokines/metabolism , Disease Models, Animal , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Matrix Metalloproteinase 9/metabolism , Mice, Inbred BALB C , Mitogen-Activated Protein Kinases/metabolism , Ovalbumin/immunology , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Respiratory Mucosa/metabolism , Respiratory Mucosa/drug effects , Respiratory Mucosa/immunology , Respiratory Mucosa/pathology , Signal Transduction/drug effects
19.
Sci China Life Sci ; 67(7): 1413-1426, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38565741

ABSTRACT

Endocrine therapy that blocks estrogen signaling is the most effective treatment for patients with estrogen receptor positive (ER+) breast cancer. However, the efficacy of agents such as tamoxifen (Tam) is often compromised by the development of resistance. Here we report that cytokines-activated nuclear IKKα confers Tam resistance to ER+ breast cancer by inducing the expression of FAT10, and that the expression of FAT10 and nuclear IKKα in primary ER+ human breast cancer was correlated with lymphotoxin ß (LTB) expression and significantly associated with relapse and metastasis in patients treated with adjuvant mono-Tam. IKKα activation or enforced FAT10 expression promotes Tam-resistance while loss of IKKα or FAT10 augments Tam sensitivity. The induction of FAT10 by IKKα is mediated by the transcription factor Pax5, and coordinated via an IKKα-p53-miR-23a circuit in which activation of IKKα attenuates p53-directed repression of FAT10. Thus, our findings establish IKKα-to-FAT10 pathway as a new therapeutic target for the treatment of Tam-resistant ER+ breast cancer.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , I-kappa B Kinase , Signal Transduction , Tamoxifen , Animals , Female , Humans , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Cytokines/metabolism , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , I-kappa B Kinase/metabolism , MCF-7 Cells , Signal Transduction/drug effects , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics
20.
Tissue Cell ; 88: 102392, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643674

ABSTRACT

The effect of interleukin-38 (IL-38), a recently identified member of the IL-1 family with potential applications in various inflammation-related conditions, on ER stress has not been explored. Furthermore, its role in obesity-associated tendinopathy has not been investigated. In this study, human primary tenocytes were treated with palmitate (200 or 400 µM) and palmitate plus IL-38 (0-50 ng/mL) for 24 h. Western blotting was used to assess ER stress and tendinopathogenic markers in tenocytes. Monodansylcadaverine (MDC) staining was used to evaluate autophagosomes. Apoptosis was determined by cell viability assays, caspase 3 activity assays and TUNEL assays. Cell migration was evaluated by a cell scratch assay. Small interfering (si) RNA transfection was used for target gene silencing. Treatment of tenocytes with IL-38 attenuated apoptosis, restored the balance between MMPs and TIMP-1, and alleviated ER stress under palmitate conditions. IL-38 treatment enhanced AMPK phosphorylation and promoted the expression of autophagy markers related to LC3 conversion, p62 degradation, and autophagosome formation in cultured tenocytes. The effects of IL-38 on ER stress, apoptosis, and MMP-9, MMP-13, and TIMP-1 expression in palmitate-treated tenocytes were abrogated by AMPK siRNA or 3-methyladenine (3MA). These results suggest that IL-38 alleviates ER stress through the AMPK/autophagy pathway, thereby reducing apoptosis and preventing extracellular matrix (ECM) degradation in tenocytes under hyperlipidemic conditions. This study provides a promising therapeutic avenue for treating obesity-related tendinopathy using an endogenous compound such as IL-38.


Subject(s)
Apoptosis , Autophagy , Endoplasmic Reticulum Stress , Obesity , Tendinopathy , Tenocytes , Humans , Autophagy/drug effects , Tendinopathy/pathology , Tendinopathy/metabolism , Tendinopathy/drug therapy , Obesity/metabolism , Obesity/pathology , Apoptosis/drug effects , Tenocytes/metabolism , Tenocytes/drug effects , Endoplasmic Reticulum Stress/drug effects , AMP-Activated Protein Kinases/metabolism , Interleukins/metabolism , Cell Movement/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...