Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Horiz ; 5(7): 1050-1057, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32323688

ABSTRACT

Owing to their large surface area and high uptake capacity, metal-organic frameworks (MOFs) have attracted considerable attention as potential materials for gas storage, energy conversion, and electrocatalysis. Various strategies have recently been proposed to manipulate the MOF surface chemistry to facilitate exposure of the embedded metal centers at the crystal surface to allow more effective binding of target molecules to these active sites. Nevertheless, such strategies remain complex, often requiring strict control over the synthesis conditions to avoid blocking pore access, reduction in crystal quality, or even collapse of the entire crystal structure. In this work, we exploit the hydrodynamics and capillary resonance associated with acoustically-driven dynamically spreading and nebulizing thin films as a new method for ultrafast synthesis of swordlike Cu3(1,3,5-benzenetricarboxylate)n (Cu-BTC) MOFs with unique monoclinic crystal structures (P21/n) distinct to that obtained via conventional bulk solvothermal synthesis, with 'swordlike' morphologies whose lengths far exceed their thicknesses. Through pulse modulation and taking advantage of the rapid solvent evaporation associated with the high nebulisation rates, we are also able to control the thicknesses of these large aspect ratio (width and length with respect to the thickness) crystals by arresting their vertical growth, which, in turn, allows exposure of the metal active sites at the crystal surface. An upshot of such active site exposure on the crystal surface is the concomitant enhancement in the conductivity of the MOF, evident from the improvement in its current density by two orders of magnitude.

2.
Curr Pharm Des ; 26(17): 2057-2071, 2020.
Article in English | MEDLINE | ID: mdl-32250211

ABSTRACT

The innate abilities of cancer stem cells (CSCs), such as multi-drug resistance, drug efflux, quiescence and ionizing radiation tolerance, protect them from most traditional chemotherapeutics. As a result, this small subpopulation of persistent cells leads to more aggressive and chemoresistant cancers, causing tumour relapse and metastasis. This subpopulation is differentiated from the bulk tumour population through a wide variety of surface markers expressed on the cell surface. Recent developments in nanomedicine and targeting delivery methods have given rise to new possibilities for specifically targeting these markers and preferentially eliminating CSCs. Herein, we first summarize the range of surface markers identifying CSC populations in a variety of cancers; then, we discuss recent attempts to actively target CSCs and their niches using liposomal, nanoparticle, carbon nanotube and viral formulations.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Delivery Systems , Humans , Nanomedicine , Neoplasms/drug therapy , Neoplastic Stem Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...