Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
J Med Chem ; 65(8): 5990-6000, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35404053

ABSTRACT

Melanocortin peptides containing a 3-(2-naphthyl)-d-alanine residue in position 7 (DNal(2')7), reported as melanocortin-3 receptor (MC3R) subtype-specific agonists in two separate publications, were found to lack significant MC3R agonist activity. The cell lines used at the University of Arizona for pharmacological characterization of these peptides, consisting of HEK293 cells stably transfected with human melanocortin receptor subtypes MC1R, MC3R, MC4R, or MC5R, were then obtained and characterized by quantitative polymerase chain reaction (PCR). While the MC1R cell line correctly expressed only hMCR1, the three other cell lines were mischaracterized with regard to receptor subtype expression. The demonstration that a 3-(2-naphthyl)-d-alanine residue in position 7, irrespective of the melanocortin peptide template, results primarily in the antagonism of MC3R and MC4R then allowed us to search the published literature for additional errors. The erroneously characterized DNal(2')7-containing peptides date back to 2003; thus, our analysis suggests that systematic mischaracterization of the pharmacological properties of melanocortin peptides occurred.


Subject(s)
Melanocortins , Receptors, Corticotropin , Alanine , HEK293 Cells , Humans , Ligands , Peptides/metabolism , Peptides/pharmacology , Receptor, Melanocortin, Type 3 , Receptors, Corticotropin/chemistry , Receptors, Corticotropin/metabolism , Structure-Activity Relationship
2.
Sci Rep ; 11(1): 21179, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34707178

ABSTRACT

Peptides are notoriously known to display very short in vivo half-lives often measured in minutes which in many cases greatly reduces or eliminates sufficient in vivo efficacy. To obtain long half-lives allowing for up to once-weekly dosing regimen, fatty acid acylation (lipidation) have been used to non-covalently associate the peptide to serum albumin thus serving as a circulating depot. This approach is generally considered in the scientific and patent community as a standard approach to protract almost any given peptide. However, it is not trivial to prolong the half-life of peptides by lipidation and still maintain high potency and good formulation properties. Here we show that attaching a fatty acid to the obesity-drug relevant peptide PYY3-36 is not sufficient for long pharmacokinetics (PK), since the position in the backbone, but also type of fatty acid and linker strongly influences PK and potency. Furthermore, understanding the proteolytic stability of the backbone is key to obtain long half-lives by lipidation, since backbone cleavage still occurs while associated to albumin. Having identified a PYY analogue with a sufficient half-life, we show that in combination with a GLP-1 analogue, liraglutide, additional weight loss can be achieved in the obese minipig model.


Subject(s)
Oligopeptides/pharmacokinetics , Peptide YY/chemistry , Receptors, Neuropeptide Y/metabolism , Acetylation , Animals , Anti-Obesity Agents/administration & dosage , Anti-Obesity Agents/therapeutic use , CHO Cells , Cricetinae , Cricetulus , Drug Combinations , Fatty Acids/chemistry , Female , HEK293 Cells , Half-Life , Humans , Liraglutide/administration & dosage , Liraglutide/therapeutic use , Obesity/drug therapy , Oligopeptides/administration & dosage , Oligopeptides/chemistry , Oligopeptides/therapeutic use , Protein Binding , Swine , Swine, Miniature
3.
J Med Chem ; 64(15): 11183-11194, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34288673

ABSTRACT

A hallmark of the pancreatic hormone amylin is its high propensity toward the formation of amyloid fibrils, which makes it a challenging drug design effort. The amylin analogue pramlintide is commercially available for diabetes treatment as an adjunct to insulin therapy but requires three daily injections due to its short half-life. We report here the development of the stable, lipidated long-acting amylin analogue cagrilintide (23) and some of the structure-activity efforts that led to the selection of this analogue for clinical development with obesity as an indication. Cagrilintide is currently in clinical trial and has induced significant weight loss when dosed alone or in combination with the GLP-1 analogue semaglutide.


Subject(s)
Drug Development , Hypoglycemic Agents/pharmacology , Islet Amyloid Polypeptide/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Islet Amyloid Polypeptide/chemical synthesis , Islet Amyloid Polypeptide/chemistry , Islet Amyloid Polypeptide/metabolism , Islet Amyloid Polypeptide/pharmacology , Models, Molecular , Molecular Structure , Structure-Activity Relationship
4.
J Med Chem ; 64(13): 8942-8950, 2021 07 08.
Article in English | MEDLINE | ID: mdl-33944562

ABSTRACT

Here, we describe the molecular engineering of insulin icodec to achieve a plasma half-life of 196 h in humans, suitable for once-weekly subcutaneously administration. Insulin icodec is based on re-engineering of the ultra-long oral basal insulin OI338 with a plasma half-life of 70 h in humans. This systematic re-engineering was accomplished by (1) further increasing the albumin binding by changing the fatty diacid from a 1,18-octadecanedioic acid (C18) to a 1,20-icosanedioic acid (C20) and (2) further reducing the insulin receptor affinity by the B16Tyr → His substitution. Insulin icodec was selected by screening for long intravenous plasma half-life in dogs while ensuring glucose-lowering potency following subcutaneous administration in rats. The ensuing structure-activity relationship resulted in insulin icodec. In phase-2 clinical trial, once-weekly insulin icodec provided safe and efficacious glycemic control comparable to once-daily insulin glargine in type 2 diabetes patients. The structure-activity relationship study leading to insulin icodec is presented here.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Animals , Dogs , Drug Administration Schedule , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/chemistry , Injections, Intravenous , Injections, Subcutaneous , Insulin/administration & dosage , Insulin/analogs & derivatives , Male , Rats , Rats, Sprague-Dawley
5.
J Immunotoxicol ; 18(1): 30-36, 2021 12.
Article in English | MEDLINE | ID: mdl-33570451

ABSTRACT

In development of peptide therapeutics, rodents are commonly-used preclinical models when screening compounds for efficacy endpoints in the early stages of discovery projects. During the screening process, some peptides administered subcutaneously to rodents caused injection site reactions manifesting as localized swelling. Screening by postmortem evaluations of injection site swelling as a marker for local subcutaneous histamine release, were conducted in rats to select drug candidates without this adverse effect. Histological analysis of skin samples revealed that the injection site reactions were concurrent with mast cell degranulation, resulting in histamine release. Mast cell activation can be mediated by MRGPRX2, a GPCR that induces a pseudo-allergenic immune response. The present study demonstrates that a commercially-available cell-based MRGPRX2 assay reliably identifies compounds that induce histamine release or localized edema in ex vivo human and rodent skin samples. In vitro screening was subsequently implemented using the MRGPRX2 assay as a substitute for postmortem injection site evaluation, thus achieving a significant reduction in animal use. Thus, in cases where injection site reactions are encountered during in vivo screening, to enable faster screening during the early drug discovery process, an MRGPRX2 in vitro assay can be used as an efficient, more ethical tool with human translational value for the development of safer pharmacotherapies for patients.


Subject(s)
Cell Degranulation , Receptors, Neuropeptide , Allergens , Animals , Humans , Mast Cells , Nerve Tissue Proteins , Rats , Receptors, G-Protein-Coupled
6.
J Med Chem ; 64(1): 616-628, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33356257

ABSTRACT

Recently, the first basal oral insulin (OI338) was shown to provide similar treatment outcomes to insulin glargine in a phase 2a clinical trial. Here, we report the engineering of a novel class of basal oral insulin analogues of which OI338, 10, in this publication, was successfully tested in the phase 2a clinical trial. We found that the introduction of two insulin substitutions, A14E and B25H, was needed to provide increased stability toward proteolysis. Ultralong pharmacokinetic profiles were obtained by attaching an albumin-binding side chain derived from octadecanedioic (C18) or icosanedioic acid (C20) to the lysine in position B29. Crucial for obtaining the ultralong PK profile was also a significant reduction of insulin receptor affinity. Oral bioavailability in dogs indicated that C18-based analogues were superior to C20-based analogues. These studies led to the identification of the two clinical candidates OI338 and OI320 (10 and 24, respectively).


Subject(s)
Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Acylation , Administration, Oral , Amino Acid Sequence , Animals , Biological Availability , Delayed-Action Preparations , Dogs , Half-Life , Humans , Hypoglycemic Agents/pharmacokinetics , Insulin/chemistry , Insulin/pharmacokinetics , Rats
7.
Protein Sci ; 30(2): 485-496, 2021 02.
Article in English | MEDLINE | ID: mdl-33277949

ABSTRACT

The insulin epitopes for two monoclonal antibodies (mAbs), OXI-005 and HUI-018, commonly used in combination for insulin concentration determination in sandwich assays, were determined using X-ray crystallography. The crystal structure of the HUI-018 Fab in complex with human insulin (HI) was determined and OXI-005 Fab crystal structures were determined in complex with HI and porcine insulin (PI) as well as on its own. The OXI-005 epitope comprises insulin residues 1,3,4,19-21 (A-chain) and 25-30 (B-chain) and for HUI-018 residues 7,8,10-14,17 (A-chain) and 5-7, 10, 14 (B-chain). The areas of insulin involved in interactions with the mAb are 20% (OXI-005) and 24% (HUI-018) of the total insulin surface. Based on the Fab complex crystal structures with the insulins a molecular model for simultaneous binding of the Fabs to PI was built and this model was validated by small angle X-ray scattering measurements for the ternary complex. The epitopes for the mAbs on insulin were found well separated from each other as expected from luminiscent oxygen channeling immunoassay results for different insulins (HI, PI, bovine insulin, DesB30 HI, insulin glargine, insulin lispro). The affinities of the OXI-005 and HUI-018 Fabs for HI, PI, and DesB30 HI were determined using surface plasmon resonance. The KD s were found to be in the range of 1-4 nM for the HUI-018 Fab, while more different for the OXI-005 Fab (50 nM for HI, 20 nM for PI and 400 nM for DesB30 HI) supporting the importance of residue B30 for binding to OXI-005.


Subject(s)
Antibodies, Monoclonal/chemistry , Epitopes/chemistry , Immunoglobulin Fab Fragments/chemistry , Insulin/chemistry , Models, Molecular , Crystallography, X-Ray , Epitope Mapping , Humans
8.
Pharm Res ; 36(3): 49, 2019 Feb 11.
Article in English | MEDLINE | ID: mdl-30746556

ABSTRACT

PURPOSE: Fast-acting insulin aspart (faster aspart) is a novel formulation of insulin aspart containing two additional excipients: niacinamide, to increase early absorption, and L-arginine, to optimize stability. The aim of this study was to evaluate the impact of niacinamide on insulin aspart absorption and to investigate the mechanism of action underlying the accelerated absorption. METHODS: The impact of niacinamide was assessed in pharmacokinetic analyses in pigs and humans, small angle X-ray scattering experiments, trans-endothelial transport assays, vascular tension measurements, and subcutaneous blood flow imaging. RESULTS: Niacinamide increased the rate of early insulin aspart absorption in pigs, and pharmacokinetic modelling revealed this effect to be most pronounced up to ~30-40 min after injection in humans. Niacinamide increased the relative monomer fraction of insulin aspart by ~35%, and the apparent permeability of insulin aspart across an endothelial cell barrier by ~27%. Niacinamide also induced a concentration-dependent vasorelaxation of porcine arteries, and increased skin perfusion in pigs. CONCLUSION: Niacinamide mediates the acceleration of initial insulin aspart absorption, and the mechanism of action appears to be multifaceted. Niacinamide increases the initial abundance of insulin aspart monomers and transport of insulin aspart after subcutaneous administration, and also mediates a transient, local vasodilatory effect.


Subject(s)
Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents/pharmacokinetics , Insulin Aspart/pharmacokinetics , Niacinamide/pharmacology , Subcutaneous Absorption/drug effects , Animals , Cells, Cultured , Diabetes Mellitus, Type 1/blood , Dose-Response Relationship, Drug , Endothelial Cells/metabolism , Female , Humans , Hypoglycemic Agents/administration & dosage , Injections, Subcutaneous , Insulin Aspart/administration & dosage , Models, Biological , Regional Blood Flow/drug effects , Scattering, Small Angle , Subcutaneous Tissue/blood supply , Subcutaneous Tissue/drug effects , Subcutaneous Tissue/metabolism , Sus scrofa , Vasodilation/drug effects , X-Ray Diffraction
9.
Eur Phys J E Soft Matter ; 41(3): 42, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29589130

ABSTRACT

We have analyzed the behavior of a randomly triangulated, self-avoiding surface model of a flexible, fluid membrane subject to a circular boundary by Wang-Landau Monte Carlo computer simulation techniques. The dependence of the canonical free energy and frame tension on the frame area is obtained for flexible membranes. It is shown that for low bending rigidities the framed membrane is only stable above a threshold tension, suggesting a discontinuous transition from the collapsed (branched polymer) state to a finite tension extended state. In a tension range above this threshold tension the membranes display power-law characteristics for the equation of state, while higher tension levels includes both an extended linear (elastic) as well as a highly non-linear stretching regime. For semi-flexible membranes a transition from extended to buckled conformations takes place at negative frame tensions. Our analysis indicates that at zero frame tension the crumpling transition of fluid membranes show characteristics of both critical behavior and a discontinuous transition at low bending rigidities.

10.
Diabetes ; 63(11): 3946-54, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24947349

ABSTRACT

Endogenous insulin secretion exposes the liver to three times higher insulin concentrations than the rest of the body. Because subcutaneous insulin delivery eliminates this gradient and is associated with metabolic abnormalities, functionally restoring the physiologic gradient may provide therapeutic benefits. The effects of recombinant human insulin (HI) delivered intraportally or peripherally were compared with an acylated insulin model compound (insulin-327) in dogs. During somatostatin and basal portal vein glucagon infusion, insulin was infused portally (PoHI; 1.8 pmol/kg/min; n = 7) or peripherally (PeHI; 1.8 pmol/kg/min; n = 8) and insulin-327 (Pe327; 7.2 pmol/kg/min; n = 5) was infused peripherally. Euglycemia was maintained by glucose infusion. While the effects on liver glucose metabolism were greatest in the PoHI and Pe327 groups, nonhepatic glucose uptake increased most in the PeHI group. Suppression of lipolysis was greater during PeHI than PoHI and was delayed in Pe327 infusion. Thus small increments in portal vein insulin have major consequences on the liver, with little effect on nonhepatic glucose metabolism, whereas insulin delivered peripherally cannot act on the liver without also affecting nonhepatic tissues. Pe327 functionally restored the physiologic portal-arterial gradient and thereby produced hepato-preferential effects.


Subject(s)
Glucose/metabolism , Insulin/analogs & derivatives , Insulin/pharmacology , Lipid Metabolism/drug effects , Animals , Blood Glucose , Dogs , Female , Glucagon/metabolism , Lipolysis/drug effects , Male
11.
Nano Lett ; 14(3): 1659-64, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24524631

ABSTRACT

We demonstrate the highly efficient (>50%) conversion of freely propagating light to channel plasmon-polaritons (CPPs) in gold V-groove waveguides using compact 1.6 µm long waveguide-termination coupling mirrors. Our straightforward fabrication process, involving UV-lithography and crystallographic silicon etching, forms the coupling mirrors innately and ensures exceptional-quality, wafer-scale device production. We tailor the V-shaped profiles by thermal silicon oxidation in order to shift initially wedge-located modes downward into the V-grooves, resulting in well-confined CPPs suitable for nanophotonic applications.

12.
Lab Chip ; 13(5): 928-39, 2013 Mar 07.
Article in English | MEDLINE | ID: mdl-23325461

ABSTRACT

We introduce a new field-flow fractionation (FFF) technique, whereby molecules are separated based on their differential interaction (dielectrophoresis (DEP)) with optical electric fields, i.e. electric fields with frequencies in the visible and near-infrared range. The results show that a parallel array of axially non-uniform optical fields yielding an attractive potential (positive-DEP-FFF) is advantageous for the separation of polymers, biomolecules, and nanoparticles over very short distances. Furthermore, positive-DEP-FFF yields superior selectivity and resolution compared to conventional separation techniques, which do not lend themselves to miniaturization. A wide range of parameters are considered and the results are presented considering traditional chromatography parameters: the retention ratio and resolution. A simple analytical model is introduced which captures the trends for small normalized decay lengths and will be useful in the design of experimental separation platforms.

13.
PLoS One ; 7(10): e44270, 2012.
Article in English | MEDLINE | ID: mdl-23049674

ABSTRACT

AIMS/HYPOTHESIS: Several studies have shown that adiponectin can lower blood glucose in diabetic mice. The aim of this study was to establish an effective adiponectin production process and to evaluate the anti-diabetic potential of the different adiponectin forms in diabetic mice and sand rats. METHODS: Human high molecular weight, mouse low molecular weight and mouse plus human globular adiponectin forms were expressed and purified from mammalian cells or yeast. The purified protein was administered at 10-30 mg/kg i.p. b.i.d. to diabetic db/db mice for 2 weeks. Furthermore, high molecular weight human and globular mouse adiponectin batches were administered at 5-15 mg/kg i.p. b.i.d. to diabetic sand rats for 12 days. RESULTS: Surprisingly, none of our batches had any effect on blood glucose, HbA1c, plasma lipids or body weight in diabetic db/db mice or sand rats. In vitro biological, biochemical and biophysical data suggest that the protein was correctly folded and biologically active. CONCLUSIONS/INTERPRETATION: Recombinant adiponectin is ineffective at lowering blood glucose in diabetic db/db mice or sand rats.


Subject(s)
Adiponectin/pharmacology , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Recombinant Proteins/pharmacology , Adiponectin/genetics , Adiponectin/metabolism , Animals , Body Weight/drug effects , Chromatography, Gel , Cloning, Molecular , DNA Primers/genetics , Electrophoresis, Polyacrylamide Gel , Gerbillinae , Glycated Hemoglobin/metabolism , HEK293 Cells , Humans , Lipids/blood , Mice , Mice, Obese , Mutagenesis, Site-Directed , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae , Species Specificity
14.
Nanotechnology ; 23(38): 385306, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-22948403

ABSTRACT

We exploit the localized surface-plasmon resonance (LSPR) of terahertz gold gammadion structures for wafer scale critical dimension metrology of nanostructures. The proposed characterization method, LSPR spectroscopy, is based on optical transmission measurements and is benchmarked against numerical simulations of imprinted structures characterized by atomic force microscopy. There is a fair agreement between the two methods and the simulations enable the translation of optical spectra to critical dimensions of the physical structures, a concept known from scatterometry. The results demonstrate the potential of LSPR spectroscopy as an alternative characterization method to scanning electron microscopy, atomic force microscopy and scatterometry.


Subject(s)
Crystallization/methods , Gold/chemistry , Molecular Imprinting/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Spectrum Analysis/methods , Surface Plasmon Resonance/methods , Gold/analysis , Materials Testing/methods , Particle Size , Surface Properties
15.
Opt Express ; 18(16): 17187-92, 2010 Aug 02.
Article in English | MEDLINE | ID: mdl-20721107

ABSTRACT

We employ a planar metamaterial structure composed of a split-ring-resonator (SRR) and paired nano-rods to experimentally realize a spectral response at near-infrared frequencies resembling that of electromagnetically induced transparency. A narrow transparency window associated with low loss is produced, and the magnetic field enhancement at the center of the SRR is dramatically changed, due to the interference between the resonances with significantly different linewidths. The variation of the spectral response in terms of relative position of the bright and dark elements is evaluated with numerical simulations.


Subject(s)
Electromagnetic Fields , Infrared Rays , Refractometry/instrumentation , Scattering, Radiation , Equipment Design , Vibration
16.
J Pharm Biomed Anal ; 51(1): 217-24, 2010 Jan 05.
Article in English | MEDLINE | ID: mdl-19733992

ABSTRACT

The study was a comparison between a Luminescent Oxygen Channeling Immunoassay (LOCI) and an enzyme-linked immunosorbent assay (ELISA) for quantification of Insulin Aspart (IAsp) in human serum. The advantage of LOCI compared to ELISA is reduced workload and higher throughput. The ELISA assay was performed as published (Andersen et al., 2000 [5]). The LOCI followed a 2-step reaction. First, the sample was incubated for 1h with a mixture of biotinylated antibody specific for IAsp and beads coated with insulin-detecting antibody. This step was followed by a 30-min incubation with beads covalently coated with streptavidin. When the beads were brought in proximity through binding of IAsp, light was generated from a chemiluminescent reaction in the beads. This light was measured and quantified. Spiked samples with different concentrations of IAsp were prepared in human serum to compare ELISA and LOCI. Human serum samples (n=510) from a pilot study with healthy subjects receiving IAsp were also analysed and compared in the two assays. Higher precision, improved accuracy and a wider analytical range were found using LOCI compared to ELISA. However, sample haemolysis interfered more when using LOCI than ELISA. The IAsp concentrations determined in the human serum samples from the pilot study gave a good correlation between the two assays. In conclusion, LOCI can determine IAsp in human serum just as well as ELISA. Using LOCI reduces the workload, which is particularly useful when handling large sample sizes.


Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Hypoglycemic Agents/blood , Insulin/analogs & derivatives , Luminescent Measurements/methods , Animals , Humans , Immunoassay/methods , Insulin/blood , Insulin Aspart , Oxygen/chemistry , Reproducibility of Results , Swine
17.
J Med Chem ; 52(9): 2989-3000, 2009 May 14.
Article in English | MEDLINE | ID: mdl-19385613

ABSTRACT

The aim of the work presented here was to design and synthesize potent human glucagon receptor antagonists with improved pharmacokinetic (PK) properties for development of pharmaceuticals for the treatment of type 2 diabetes. We describe the preparation of compounds with cyclic cores (5-aminothiazoles), their binding affinities for the human glucagon and GIP receptors, as well as affinities for rat, mouse, pig, dog, and monkey glucagon receptors. Generally, the compounds had slightly less glucagon receptor affinity compared to compounds of the previous series, but this was compensated for by much improved PK profiles in both rats and dogs with high oral bioavailabilities and sustained high plasma exposures. The compounds generally showed species selectivity for glucagon receptor binding with poor affinities for the rat, mouse, rabbit, and pig receptors. However, dog and monkey glucagon receptor affinities seem to reflect the human situation. One compound of this series, 18, was tested intravenously in an anesthetized glucagon-challenged monkey model of hyperglucagonaemia and hyperglycaemia and was shown dose-dependently to decrease glycaemia. Further, high plasma exposures and a long plasma half-life (5.2 h) were obtained.


Subject(s)
Receptors, Glucagon/antagonists & inhibitors , Thiazoles/pharmacology , Thiazoles/pharmacokinetics , Administration, Oral , Animals , Cell Line , Diabetes Mellitus, Type 2/drug therapy , Drug Design , Half-Life , Humans , Receptors, Glucagon/metabolism , Species Specificity , Thiazoles/chemistry , Thiazoles/metabolism
18.
J Med Chem ; 51(17): 5387-96, 2008 Sep 11.
Article in English | MEDLINE | ID: mdl-18707090

ABSTRACT

Optimization of a new series of small molecule human glucagon receptor (hGluR) antagonists is described. In the process of optimizing glucagon receptor antagonists, we counter-screened against the closely related human gastric inhibitory polypeptide receptor (hGIPR), and through structure activity analysis, we obtained compounds with low nanomolar affinities toward the hGluR, which were selective against the hGIPR and the human glucagon-like peptide-1 receptor (hGLP-1R). In the best cases, we obtained a >50 fold selectivity for the hGluR over the hGIPR and a >1000 fold selectivity over the hGLP-1R. A potent and selective glucagon receptor antagonist was demonstrated to inhibit glucagon-induced glycogenolysis in primary rat hepatocytes as well as to lower glucagon-induced hyperglycemia in Sprague-Dawley rats. Furthermore, the compound was shown to lower blood glucose in the ob/ob mouse after oral dosing.


Subject(s)
Hyperglycemia/drug therapy , Receptors, Gastrointestinal Hormone/metabolism , Receptors, Glucagon/antagonists & inhibitors , Animals , Blood Glucose/drug effects , Cells, Cultured , Glycogenolysis/drug effects , Hepatocytes/metabolism , Humans , Mice , Mice, Obese , Protein Binding , Rats , Rats, Sprague-Dawley , Receptors, Gastrointestinal Hormone/antagonists & inhibitors , Structure-Activity Relationship
19.
Bioorg Med Chem Lett ; 17(16): 4625-9, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17560785

ABSTRACT

Structure based ligand design was used in order to design a partial agonist for the PPARdelta receptor. The maximum activation in the transactivation assay was reduced from 87% to 39%. The crystal structure of the ligand binding domain of the PPARdelta receptor in complex with compound 2 was determined in order to understand the structural changes which gave rise to the decrease in maximum activation.


Subject(s)
Butyrates/chemistry , Butyrates/pharmacology , PPAR delta/agonists , Phenylurea Compounds/chemistry , Phenylurea Compounds/pharmacology , Thiazoles/chemistry , Thiazoles/pharmacology , Drug Design , Models, Molecular , Molecular Structure , Structure-Activity Relationship
20.
Bioorg Med Chem Lett ; 17(15): 4144-9, 2007 Aug 01.
Article in English | MEDLINE | ID: mdl-17553681

ABSTRACT

Y-shaped molecules bearing alkynylallylic moieties were found to be potent and selective PPARdelta activators. The alkynylallylic moiety was synthesized from alkyn-1-ols by hydroalumination followed by a cross-coupling reaction. Series of active compounds 6 were obtained by stepwise changing the structure of the known PPARpan agonist 5 into Y-shaped compounds. The most active and selective compound, 6f, had a PPARdelta potency of 0.13 microM, which is 50-fold more potent than compound 5.


Subject(s)
PPAR delta/agonists , Models, Molecular , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...