Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Ecol Evol ; 38(11): 1051-1059, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37558537

ABSTRACT

Assessing and predicting the persistence of populations is essential for the conservation and control of species. Here, we argue that local mechanisms require a better conceptual synthesis to facilitate a more holistic consideration along with regional mechanisms known from metapopulation theory. We summarise the evidence for local buffer mechanisms along with their capacities and emphasise the need to include multiple buffer mechanisms in studies of population persistence. We propose an accessible framework for local buffer mechanisms that distinguishes between damping (reducing fluctuations in population size) and repelling (reducing population declines) mechanisms. We highlight opportunities for empirical and modelling studies to investigate the interactions and capacities of buffer mechanisms to facilitate better ecological understanding in times of ecological upheaval.

2.
Nat Commun ; 14(1): 3373, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37291123

ABSTRACT

Climate change is expected to shift the boreal biome northward through expansion at the northern and contraction at the southern boundary respectively. However, biome-scale evidence of such a shift is rare. Here, we used remotely-sensed tree cover data to quantify temporal changes across the North American boreal biome from 2000 to 2019. We reveal a strong north-south asymmetry in tree cover change, coupled with a range shrinkage of tree cover distributions. We found no evidence for tree cover expansion in the northern biome, while tree cover increased markedly in the core of the biome range. By contrast, tree cover declined along the southern biome boundary, where losses were related largely to wildfires and timber logging. We show that these contrasting trends are structural indicators for a possible onset of a biome contraction which may lead to long-term carbon declines.


Subject(s)
Taiga , Wildfires , Ecosystem , Trees , Climate Change , North America , Forests
3.
Ecol Appl ; 30(6): e02120, 2020 09.
Article in English | MEDLINE | ID: mdl-32159900

ABSTRACT

Sustainable management of wildlife populations can be aided by building models that both identify current drivers of natural dynamics and provide near-term predictions of future states. We employed a Strategic Foresight Protocol (SFP) involving stakeholders to decide the purpose and structure of a dynamic state-space model for the population dynamics of the Willow Ptarmigan, a popular game species in Norway. Based on local knowledge of stakeholders, it was decided that the model should include food web interactions and climatic drivers to provide explanatory predictions. Modeling confirmed observations from stakeholders that climate change impacts Ptarmigan populations negatively through intensified outbreaks of insect defoliators and later onset of winter. Stakeholders also decided that the model should provide anticipatory predictions. The ability to forecast population density ahead of the harvest season was valued by the stakeholders as it provides the management extra time to consider appropriate harvest regulations and communicate with hunters prior to the hunting season. Overall, exploring potential drivers and predicting short-term future states, facilitate collaborative learning and refined data collection, monitoring designs, and management priorities. Our experience from adapting a SFP to a management target with inherently complex dynamics and drivers of environmental change, is that an open, flexible, and iterative process, rather than a rigid step-wise protocol, facilitates rapid learning, trust, and legitimacy.


Subject(s)
Climate Change , Norway , Population Density , Population Dynamics , Seasons
4.
J Anim Ecol ; 88(8): 1134-1145, 2019 08.
Article in English | MEDLINE | ID: mdl-30737772

ABSTRACT

Spatial synchrony in population dynamics can be caused by dispersal or spatially correlated variation in environmental factors like weather (Moran effect). Distinguishing between these mechanisms is challenging for natural populations, and the study of dispersal-induced synchrony in particular has been dominated by theoretical modelling and laboratory experiments. The goal of the present study was to evaluate the evidence for dispersal as a cause of meso-scale (distances of tens of kilometres) spatial synchrony in natural populations of the two cyclic geometrid moths Epirrita autumnata and Operophtera brumata in sub-arctic mountain birch forest in northern Norway. To infer the role of dispersal in geometrid synchrony, we applied three complementary approaches, namely estimating the effect of design-based dispersal barriers (open sea) on synchrony, comparing the strength of synchrony between E. autumnata (winged adults) and the less dispersive O. brumata (wingless adult females), and relating the directionality (anisotropy) of synchrony to the predominant wind directions during spring, when geometrid larvae engage in windborne dispersal (ballooning). The estimated effect of dispersal barriers on synchrony was almost three times stronger for the less dispersive O. brumata than E. autumnata. Inter-site synchrony was also weakest for O. brumata at all spatial lags. Both observations argue for adult dispersal as an important synchronizing mechanism at the spatial scales considered. Further, synchrony in both moth species showed distinct anisotropy and was most spatially extensive parallel to the east-west axis, coinciding closely to the overall dominant wind direction. This argues for a synchronizing effect of windborne larval dispersal. Congruent with most extensive dispersal along the east-west axis, E. autumnata also showed evidence for a travelling wave moving southwards at a speed of 50-80 km/year. Our results suggest that dispersal processes can leave clear signatures in both the strength and directionality of synchrony in field populations, and highlight wind-driven dispersal as promising avenue for further research on spatial synchrony in natural insect populations.


Subject(s)
Moths , Animals , Disease Outbreaks , Female , Larva , Life Cycle Stages , Norway , Population Dynamics
5.
Int J Mol Sci ; 16(9): 22541-54, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26393576

ABSTRACT

The autumnal moth (Epirrita autumnata) is a cyclically outbreaking forest Lepidoptera with circumpolar distribution and substantial impact on Northern ecosystems. We have isolated 21 microsatellites from the species to facilitate population genetic studies of population cycles, outbreaks, and crashes. First, PCR primers and PCR conditions were developed to amplify 19 trinucleotide loci and two tetranucleotide loci in six multiplex PCR approaches and then analyzed for species specificity, sensitivity and precision. Twelve of the loci showed simple tandem repeat array structures while nine loci showed imperfect repeat structures, and repeat numbers varied in our material between six and 15. The application in population genetics for all the 21 microsatellites were further validated in 48 autumnal moths sampled from Northern Norway, and allelic variation was detected in 19 loci. The detected numbers of alleles per locus ranged from two to 13, and the observed and expected heterozygosities varied from 0.04 to 0.69 and 0.04 to 0.79, respectively. Evidence for linkage disequilibrium was found for six loci as well as indication of one null allele. We find that these novel microsatellites and their multiplex-PCR assays are suitable for further research on fine- and large-scale population-genetic studies of Epirrita autumnata.


Subject(s)
Genetic Variation , Microsatellite Repeats , Moths/genetics , Animals , Genetic Loci , Genetics, Population , Linkage Disequilibrium , Moths/classification , Moths/physiology , Multiplex Polymerase Chain Reaction/methods , Norway , Species Specificity
6.
PLoS One ; 9(6): e99624, 2014.
Article in English | MEDLINE | ID: mdl-24911056

ABSTRACT

Saproxylic insects play an important part in decomposing dead wood in healthy forest ecosystems, but little is known about their role in the aftermath of large-scale forest mortality caused by pest insect outbreaks. We used window traps to study short-term changes in the abundance and community structure of saproxylic beetles following extensive mortality of mountain birch in sub-arctic northern Norway caused by an outbreak of geometrid moths. Three to five years after the outbreak, the proportion of obligate saproxylic individuals in the beetle community was roughly 10% higher in forest damaged by the outbreak than in undamaged forest. This was mainly due to two early-successional saproxylic beetle species. Facultative saproxylic beetles showed no consistent differences between damaged and undamaged forest. These findings would suggest a weak numerical response of the saproxylic beetle community to the dead wood left by the outbreak. We suggest that species-specific preferences for certain wood decay stages may limit the number of saproxylic species that respond numerically to an outbreak at a particular time, and that increases in responding species may be constrained by limitations to the amount of dead wood that can be exploited within a given timeframe (i.e. satiation effects). Low diversity of beetle species or slow development of larvae in our cold sub-arctic study region may also limit numerical responses. Our study suggests that saproxylic beetles, owing to weak numerical responses, may so far have played a minor role in decomposing the vast quantities of dead wood left by the moth outbreak.


Subject(s)
Coleoptera , Ecosystem , Forests , Moths , Wood , Animals , Arctic Regions , Betula , Geography , Norway , Population Density
7.
Oecologia ; 173(3): 859-70, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23568711

ABSTRACT

The increased spread of insect outbreaks is among the most severe impacts of climate warming predicted for northern boreal forest ecosystems. Compound disturbances by insect herbivores can cause sharp transitions between vegetation states with implications for ecosystem productivity and climate feedbacks. By analysing vegetation plots prior to and immediately after a severe and widespread outbreak by geometrid moths in the birch forest-tundra ecotone, we document a shift in forest understorey community composition in response to the moth outbreak. Prior to the moth outbreak, the plots divided into two oligotrophic and one eutrophic plant community. The moth outbreak caused a vegetation state shift in the two oligotrophic communities, but only minor changes in the eutrophic community. In the spatially most widespread communities, oligotrophic dwarf shrub birch forest, dominance by the allelopathic dwarf shrub Empetrum nigrum ssp. hermaphroditum, was effectively broken and replaced by a community dominated by the graminoid Avenella flexuosa, in a manner qualitatively similar to the effect of wild fires in E. nigrum communities in coniferous boreal forest further south. As dominance by E. nigrum is associated with retrogressive succession the observed vegetation state shift has widespread implications for ecosystem productivity on a regional scale. Our findings reveal that the impact of moth outbreaks on the northern boreal birch forest system is highly initial-state dependent, and that the widespread oligotrophic communities have a low resistance to such disturbances. This provides a case for the notion that climate impacts on arctic and northern boreal vegetation may take place most abruptly when conveyed by changed dynamics of irruptive herbivores.


Subject(s)
Ecosystem , Feeding Behavior/physiology , Models, Biological , Moths/physiology , Trees/physiology , Animals , Cluster Analysis , Ericaceae/physiology , Norway , Poaceae/physiology , Population Dynamics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...