Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 6261, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491131

ABSTRACT

Terahertz imaging is unlocking unique capabilities for the analysis of cultural heritage artifacts. This paper uses terahertz time-domain imaging for the study of a gilded wooden artifact, providing a means to perform stratigraphic analysis, yielding information about the composition of the artifact, presence of certain materials identifiable through their THz spectral fingerprint, as well as alterations that have been performed over time. Due to the limited information that is available for many historic artifacts, the data that can be obtained through the presented technique can guide proper stewardship of the artifact, informing its long-term preservation.

2.
Article in English | MEDLINE | ID: mdl-37883033

ABSTRACT

Atomically thin platinum diselenide (PtSe2) films are promising for applications in the fields of electronics, spintronics, and photodetectors owing to their tunable electronic structure and high carrier mobility. Using terahertz (THz) spectroscopy techniques, we investigated the layer-dependent semiconducting-to-metallic phase transition and associated intrinsic carrier dynamics in large-scale PtSe2 films grown by molecular beam epitaxy. The uniformity of large-scale PtSe2 films was characterized by spatially and frequency-resolved THz-based sheet conductivity mapping. Furthermore, we use an optical-pump-THz-probe technique to study the transport dynamics of photoexcited carriers and explore light-induced intergrain carrier transport in PtSe2 films. We demonstrate large-scale THz-based mapping of the electrical properties of transition metal dichalcogenide films and show that the two noncontact THz-based approaches provide insight in the spatial and temporal properties of PtSe2 films.

3.
Opt Express ; 31(6): 9287-9298, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-37157501

ABSTRACT

The frequency-resolved terahertz (THz) beam profile characteristics of a two-color air-plasma THz source were investigated in the broadband frequency range (1-15 THz). The frequency resolution is achieved by combining THz waveform measurements and the knife-edge technique. Our results show that the THz focal spot size is strongly frequency dependent. This has important implications on nonlinear THz spectroscopy applications where accurate knowledge of the applied THz electrical field strength onto the sample is important. In addition, the transition between the solid and hollow beam profile of the air-plasma THz beam was carefully identified. Far from the focus, the features across the 1-15 THz range have also been carefully examined, revealing the characteristic conical emission patterns at all frequencies.

4.
Sensors (Basel) ; 23(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37050729

ABSTRACT

We demonstrate that the conductivity of graphene on thin-film polymer substrates can be accurately determined by reflection-mode air-plasma-based THz time-domain spectroscopy (THz-TDS). The phase uncertainty issue associated with reflection measurements is discussed, and our implementation is validated by convincing agreement with graphene electrical properties extracted from more conventional transmission-mode measurements. Both the reflection and transmission THz-TDS measurements reveal strong non-linear and instantaneous conductivity depletion across an ultra-broad bandwidth (1-9 THz) under relatively high incident THz electrical field strengths (up to 1050 kV/cm).

5.
Sensors (Basel) ; 23(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36992008

ABSTRACT

We demonstrate the use of a novel, integrated THz system to obtain time-domain signals for spectroscopy in the 0.1-1.4 THz range. The system employs THz generation in a photomixing antenna excited by a broadband amplified spontaneous emission (ASE) light source and THz detection with a photoconductive antenna by coherent cross-correlation sampling. We benchmark the performance of our system against a state-of-the-art femtosecond-based THz time-domain spectroscopy system in terms of mapping and imaging of the sheet conductivity of large-area graphene grown by chemical vapor deposition (CVD) and transferred to a PET polymer substrate. We propose to integrate the algorithm for the extraction of the sheet conductivity with the data acquisition, thereby enabling true in-line monitoring capability of the system for integration in graphene production facilities.

6.
Rev Sci Instrum ; 92(1): 014903, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33514228

ABSTRACT

We present a four-probe setup for measuring temperature of Joule-heated silicon in two independent ways from the same voltage measurement: a method using the thermal dependence of resistivity and a method based on the measured sheet power density. The two methods are compared to optical temperature measurements made by fitting a gray-body model onto data from a commercial spectrometer. The two four-probe temperature measurements are conducted from 890 K to 1540 K, and they converge at temperatures above 1400 K indicating a high degree of self-consistency.

7.
Opt Express ; 28(9): 14169-14175, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32403877

ABSTRACT

This feature issue presents recent progress in long-wavelength photonics, focusing on wavelengths that span the mid-infrared (3-50 µm), the long-wavelength infrared (30-60 µm), and the terahertz (60-300 µm) portions of the electromagnetic spectrum. The papers in this feature issue report recent progress in the generation, manipulation, detection, and use of light across this long-wave region of the "photonics spectrum," including novel sources and cutting edge advances in detectors, long-wavelength non-linear processes, optical metamaterials and metasurfaces, and molecular spectroscopy. The range of topics covered in this feature issue provide an excellent insight into the expanding interest in long-wavelength photonics, which could open new possibilities for basic research and applications in industries that span health, environmental, and security.

8.
Opt Express ; 28(7): 9631-9641, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32225566

ABSTRACT

We demonstrate the first megahertz (MHz) repetition-rate, broadband terahertz (THz) source based on optical rectification in the organic crystal HMQ-TMS driven by a femtosecond Yb:fibre laser. Pumping at 1035 nm with 30 fs pulses, we achieve few-cycle THz emission with a smooth multi-octave spectrum that extends up to 6 THz at -30 dB, with conversion efficiencies reaching 10-4 and an average output power of up to 0.38 mW. We assess the thermal damage limit of the crystal and conclude a maximum fluence of ∼1.8 mJ·cm-2 at 10 MHz with a 1/e2 pump beam diameter of 0.10 mm. We compare the performance of HMQ-TMS with the prototypical inorganic crystal gallium phosphide (GaP), yielding a tenfold electric field increase with a peak on-axis field strength of 7 kV·cm-1 and almost double the THz bandwidth. Our results further demonstrate the suitability of organic crystals in combination with fibre lasers for repetition-rate scaling of broadband, high-power THz sources for time-domain spectroscopic applications.

9.
Opt Express ; 27(3): 3618-3628, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30732379

ABSTRACT

We investigate the dielectric properties of the 4H and 6H polytypes of silicon carbide in the 0.1-19 THz range, below the fundamental transverse-optical phonons. Folding of the Brillouin zone due to the specific superlattice structure of the two polytypes leads to activation of acoustic phonon modes. We use a combination of ultrabroadband terahertz time-domain spectroscopy and simulations based on density-functional perturbation theory to observe and characterize these modes, including band splitting due to the dissimilar carbon and silicon sublattices of the structures, and an indirect measurement of the anisotropic sound velocities in the two polytypes.

10.
Opt Express ; 26(7): 9220-9229, 2018 Apr 02.
Article in English | MEDLINE | ID: mdl-29715876

ABSTRACT

We present a comparative study of electrical measurements of graphene using terahertz time-domain spectroscopy in transmission and reflection mode, and compare the measured sheet conductivity values to electrical van der Pauw measurements made independently in three different laboratories. Overall median conductivity variations of up to 15% were observed between laboratories, which are attributed mainly to the well-known temperature and humidity dependence of non-encapsulated graphene devices. We conclude that terahertz time-domain spectroscopy performed in either reflection mode or transmission modes are indeed very accurate methods for mapping electrical conductivity of graphene, and that both methods are interchangeable within measurement uncertainties. The conductivity obtained via terahertz time-domain spectroscopy were consistently in agreement with electrical van der Pauw measurements, while offering the additional advantages associated with contactless mapping, such as high throughput, no lithography requirement, and with the spatial mapping directly revealing the presence of any inhomogeneities or isolating defects. The confirmation of the accuracy of reflection-mode removes the requirement of a specialized THz-transparent substrate to accurately measure the conductivity.

11.
Opt Express ; 25(3): 2725-2732, 2017 Feb 06.
Article in English | MEDLINE | ID: mdl-29519114

ABSTRACT

We demonstrate a method for reliably determining the electrical properties of graphene including the carrier scattering time and carrier drift mobility from terahertz time- domain spectroscopy measurements (THz-TDS). By comparing transients originating from directly transmitted pulses and the echoes from internal reflections in a substrate, we are able to extract electrical properties irrespective of random time delays between pulses emitted in a THz-TDS setup. If such time delays are not accounted for they can significantly influence the extracted properties of the material. The technique is useful for a robust determination of electrical properties from THz-TDS measurements and is compatible with substrate materials where transients from internal reflections are well-separated in time.

12.
Sci Rep ; 6: 37738, 2016 11 25.
Article in English | MEDLINE | ID: mdl-27886232

ABSTRACT

Nonlinear spectroscopic investigation in the terahertz (THz) range requires significant field strength of the light fields. It is still a challenge to obtain the required field strengths in free space from table-top laser systems at sufficiently high repetition rates to enable quantitative nonlinear spectroscopy. It is well known that local enhancement of the THz field can be obtained for instance in narrow apertures in metallic films. Here we show by simulation, analytical modelling and experiment that the achievable field enhancement in a two-dimensional array of slits with micrometer dimensions in a metallic film can be increased by at least 60% compared to the enhancement in an isolated slit. The additional enhancement is obtained by optimized plasmonic coupling between the lattice modes and the resonance of the individual slits. Our results indicate a viable route to sensitive schemes for THz spectroscopy with slit arrays manufactured by standard UV photolithography, with local field strengths in the multi-ten-MV/cm range at kHz repetition rates, and tens of kV/cm at oscillator repetition rates.

13.
Appl Opt ; 54(16): 5123-9, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26192674

ABSTRACT

Terahertz time-domain imaging (THz-TDI) has been applied for imaging a hidden portrait and other subsurface composition layers of an 18th century (18C) easel painting by Nicolai Abildgaard, the most important 18C Danish neoclassical painter of historical and mythological subjects. For the first time, a real hidden portrait on an easel painting has been imaged by THz-TDI, with an unexpected richness of detail. THz C- and B-scans have been compared with images obtained by x-ray radiography and invasive cross-sectional imaging, leading to a deeper understanding of the strengths and limitations of this technique for art diagnostic purposes and defining its role among complementary tools for the investigation of art objects. We present a fast and effective method to separate single THz pulse reflections of interest from the entire signal across the image, adapted for uneven surfaces typically encountered in practical applications of the technique. Interfaces between layers of the painting have been successfully imaged, contributing substantially to the understanding of the structure of the painting.

14.
Opt Express ; 23(9): 11586-99, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25969252

ABSTRACT

We present a new technique for permanent metamaterial reconfiguration via optically induced mass transfer of gold. This mass transfer, which can be explained by field-emission induced electromigration, causes a geometric change in the metamaterial sample. Since a metamaterial's electromagnetic response is dictated by its geometry, this structural change massively alters the metamaterial's behavior. We show this by optically forming a conducting pathway between two closely spaced dipole antennas, thereby changing the resonance frequency by a factor of two. After discussing the physics of the process, we conclude by presenting an optical fuse that can be used as a sacrificial element to protect sensitive components, demonstrating the applicability of optically induced mass transfer for device design.

15.
Sci Rep ; 5: 7620, 2015 Jan 05.
Article in English | MEDLINE | ID: mdl-25557284

ABSTRACT

Research on terahertz waveguides is experiencing a tremendous growth due to their importance for compact and robust THz systems. However, designing compact, broadband, mechanically stable and environmentally shielded THz waveguides is still a challenge due to high losses of both metals and dielectrics in this frequency range. Here we report on a novel twist on the classical tube waveguide where we deliberately introduce a thick and highly lossy cladding layer. By this we attenuate the field in the cladding and thus prevent interference with the core field. This mechanism breaks the well-known ARROW guiding mechanism, and as a result, extremely broad bandwidth and low dispersion can be achieved with a very simple design. Since the main part of the field propagates inside the air-core, the propagation loss is still kept at a very low level. Simulations, analytical modelling and experiments verify our findings. The proposed THz waveguide is robust, insensitive to external perturbation and easy to handle, and thus the design represents a significant advance of the field of THz dielectric waveguides suitable for the 0.3-1 THz band which in the future will be important for ultrafast wireless communication systems.

16.
Opt Express ; 22(8): 9486-97, 2014 Apr 21.
Article in English | MEDLINE | ID: mdl-24787837

ABSTRACT

We present a thorough practical design optimization of broadband low loss, terahertz (THz) photonic crystal fiber directional couplers in which the two cores are mechanically down-doped with a triangular array of air holes. A figure of merit taking both the 3-dB bandwidth and loss of the coupler into account, is used for optimization of the structure parameters, given by the diameter and pitch of the cladding (d and Λ) and of the core (d(c) and Λc) air-hole structure. The coupler with Λ = 498.7 µm, d = 324.2 µm, Λc = 74.8 µm, and d(c) = 32.5 µm is found to have the best performance at a center frequency of 1THz, with a bandwidth of 0.25 THz and a total device loss of 9.2 dB. The robustness of the optimum coupler to structural changes is investigated.

17.
Opt Express ; 20(20): 22770-82, 2012 Sep 24.
Article in English | MEDLINE | ID: mdl-23037428

ABSTRACT

In this article, we propose a simple scheme to make a metallic film on a semi-infinite substrate optically transparent, thus obtaining a completely transparent electrode in a desired frequency range. By placing a composite layer consisting of dielectric and metallic stripes on top of the metallic one, we found that the back-scattering from the metallic film can be almost perfectly canceled by the composite layer under certain conditions, leading to transparency of the whole structure. We performed proof-of-concept experiments in the terahertz domain to verify our theoretical predictions, using carefully designed metamaterials to mimic plasmonic metals in optical regime. Experiments are in excellent agreement with full-wave simulations.


Subject(s)
Electrodes , Models, Theoretical , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Light , Refractometry , Scattering, Radiation , Terahertz Radiation
18.
Opt Express ; 20(1): 635-43, 2012 Jan 02.
Article in English | MEDLINE | ID: mdl-22274387

ABSTRACT

We have wrapped metallic cylinders with strongly absorbing metamaterials. These resonant structures, which are patterned on flexible substrates, smoothly coat the cylinder and give it an electromagnetic response designed to minimize its radar cross section. We compare the normal-incidence, small-beam reflection coefficient with the measurement of the far-field bistatic radar cross section of the sample, using a quasi-planar THz wave with a beam diameter significantly larger than the sample dimensions. In this geometry we demonstrate a near-400-fold reduction of the radar cross section at the design frequency of 0.87 THz. In addition we discuss the effect of finite sample dimensions and the spatial dependence of the reflection spectrum of the metamaterial.


Subject(s)
Manufactured Materials , Models, Theoretical , Refractometry/methods , Computer Simulation , Elastic Modulus , Light , Scattering, Radiation , Terahertz Radiation
19.
Opt Express ; 20(28): 29507-17, 2012 Dec 31.
Article in English | MEDLINE | ID: mdl-23388777

ABSTRACT

We present a numerical and experimental investigation of a low-loss porous-core honeycomb fiber for terahertz wave guiding. The introduction of a porous core with hole size of the same dimension as the holes in the surrounding honeycomb cladding results in a fiber that can be drawn with much higher precision and reproducibility than a corresponding air-core fiber. The high-precision hole structure provides very clear bandgap guidance and the location of the two measured bandgaps agree well with simulations based on finite-element modeling. Fiber loss measurements reveal the frequency-dependent coupling loss and propagation loss, and we find that the fiber propagation loss is much lower than the bulk material loss within the first band gap between 0.75 and 1.05 THz.

20.
Opt Lett ; 36(5): 666-8, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21368942

ABSTRACT

In this Letter we propose a novel (to our knowledge) porous-core honeycomb bandgap design. The holes of the porous core are the same size as the holes in the surrounding cladding, thereby giving the proposed fiber important manufacturing benefits. The fiber is shown to have a 0.35-THz-wide fundamental bandgap centered at 1.05 THz. The calculated minimum loss of the fiber is 0.25 dB/cm.

SELECTION OF CITATIONS
SEARCH DETAIL
...