Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Osteoarthritis Cartilage ; 29(8): 1173-1180, 2021 08.
Article in English | MEDLINE | ID: mdl-33882334

ABSTRACT

OBJECTIVE: Meniscal degeneration is strongly associated with osteoarthritis (OA). We aimed to evaluate a 3D ultrashort-echo-time Cones magnetization transfer (UTE-Cones-MT) sequence for quantification of macromolecular fraction (MMF) and MT ratio (MTR) in menisci of healthy volunteers and patients with different degrees of OA. METHODS: Patients with mild OA (n = 19; 37-86 years; 10 males) or advanced OA (n = 12; 52-88 years; 4 males) and healthy volunteers (n = 17; 20-49 years; 7 males) were scanned with T2-FSE and UTE-Cones-MT sequences at 3T. Morphological assessment was performed using meniscal whole-organ magnetic resonance imaging score (WORMS). MMF and MTR were calculated for menisci, and correlated with age and meniscal WORMS scores. The diagnostic efficiency was performed by using receiver operating characteristic (ROC) curve and the area under the curve (AUC) analyses. RESULTS: Decreased MMF and MTR were observed in menisci of patients with mild or advanced OA compared with healthy subjects, and in menisci with tears (Grade 2-4) compared with normal menisci (Grade 0). Significant negative correlations were observed between MMF (r = -0.769, P < 0.01), MTR (r = -0.320, P < 0.01), and meniscal WORMS score. There was a mild negative correlation between MMF (r = -0.438, P < 0.01), MTR (r = -0.289, P < 0.01), and age. The AUC values of MMF and MTR in the four horns of meniscus and the posterior horn medial meniscus for differentiating OA patients from healthy volunteers were 0.762 and 0.699, and 0.835 and 0.883, respectively. CONCLUSION: The 3D UTE-Cones-MT biomarkers of MTR and especially MMF can detect compositional changes in meniscus and differentiate healthy subjects from patients with mild or advanced knee OA.


Subject(s)
Magnetic Resonance Imaging/methods , Menisci, Tibial/diagnostic imaging , Osteoarthritis, Knee/diagnostic imaging , Adult , Aged , Aged, 80 and over , Female , Humans , Imaging, Three-Dimensional , Male , Middle Aged , Severity of Illness Index , Tibial Meniscus Injuries/diagnostic imaging , Young Adult
2.
Eur Cell Mater ; 28: 299-319, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25340808

ABSTRACT

Defining the most adequate architecture of a bone substitute scaffold is a topic that has received much attention over the last 40 years. However, contradictory results exist on the effect of grain size and microporosity. Therefore, the aim of this study was to determine the effect of these two factors on the in vivo behaviour of ß-tricalcium phosphate (ß-TCP) scaffolds. For that purpose, ß-TCP scaffolds were produced with roughly the same macropore size (≈ 150 µm), and porosity (≈ 80 %), but two levels of microporosity (low: 10 % / high: ≈ 25 %) and grain size (small: 1.3 µm /large: ≈ 3.3 µm). The sample architecture was characterised extensively using materialography, Hg porosimetry, micro-computed tomography (µCT), and nitrogen adsorption. The scaffolds were implanted for 2, 4 and 8 weeks in a cylindrical 5-wall cancellous bone defect in sheep. The histological, histomorphometrical and µCT analysis of the samples revealed that all four scaffold types were almost completely resorbed within 8 weeks and replaced by new bone. Despite the three-fold difference in microporosity and grain size, very few biological differences were observed. The only significant effect at p < 0.01 was a slightly faster resorption rate and soft tissue formation between 4 and 8 weeks of implantation when microporosity was increased. Past and present results suggest that the biological response of this particular defect is not very sensitive towards physico-chemical differences of resorbable bone graft substitutes. As bone formed not only in the macropores but also in the micropores, a closer study at the microscopic and localised effects is necessary.


Subject(s)
Calcium Phosphates/chemistry , Femur/drug effects , Tissue Scaffolds/chemistry , Adsorption , Animals , Bone Regeneration , Calcium Phosphates/pharmacology , Female , Femur/physiology , Nitrogen/chemistry , Porosity , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...