Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-447351

ABSTRACT

The angiotensin-converting enzyme 2 (ACE2) protein has been highly studied as a key catalytic regulator of the renin-angiotensin system (RAS), involved in fluid homeostasis and blood pressure modulation. In addition to its important physiological role as a broadly-expressed membrane-bound protein, ACE2 serves as a cell-surface receptor for some viruses - most notably, coronaviruses such as SARS-CoV and SARS-CoV-2. Differing levels of ACE2 expression may impact viral susceptibility and subsequent changes to expression may be a pathogenic mechanism of disease risk and manifestation. Therefore, an improved understanding of how ACE2 expression is regulated at the genomic and transcriptional level may help us understand not only how the effects of pre-existing conditions (e.g., chronic obstructive pulmonary disease) may manifest with increased COVID-19 incidence, but also the mechanisms that regulate ACE2 levels following viral infection. Here, we initially perform bioinformatic analyses of several datasets to generate hypotheses about ACE2 gene-regulatory mechanisms in the context of immune signaling and chronic oxidative stress. We then identify putative non-coding regulatory elements within ACE2 intronic regions as potential determinants of ACE2 expression activity. We perform functional validation of our computational predictions in vitro via targeted CRISPR-Cas9 deletions of the identified ACE2 cis-regulatory elements in the context of both immunological stimulation and oxidative stress conditions. We demonstrate that intronic ACE2 regulatory elements are responsive to both immune signaling and oxidative-stress pathways, and this contributes to our understanding of how expression of this gene may be modulated at both baseline and during immune challenge. Our work supports the further pursuit of these putative mechanisms in our understanding, prevention, and treatment of infection and disease caused by ACE2-utilizing viruses such as SARS-CoV, SARS-CoV-2, and future emerging SARS-related viruses. Author SummaryThe recent emergence of the virus SARS-CoV-2 which has caused the COVID-19 pandemic has prompted scientists to intensively study how the virus enters human host cells. This work has revealed a key protein, ACE2, that acts as a receptor permitting the virus to infect cells. Much research has focused on how the virus physically interacts with ACE2, yet little is known on how ACE2 is turned on or off in human cells at the level of the DNA molecule. Understanding this level of regulation may offer additional ways to prevent or lower viral entry into human hosts. Here, we have examined the control of the ACE2 gene, the DNA sequence that instructs ACE2 protein receptor formation, and we have done so in the context of immune stimulation. We have indeed identified a number of DNA on/off switches for ACE2 that appear responsive to immuno-logical and oxidative stress. These switches may fine-tune how ACE2 is turned on or off before, during, and/or after infection by SARS-CoV-2 or other related coronaviruses. Our studies help pave the way for additional functional studies on these switches, and their potential therapeutic targeting in the future.

2.
Article in English | WPRIM (Western Pacific) | ID: wpr-132497

ABSTRACT

PURPOSE: Asthma is a chronic respiratory disorder that leads to inflammation and narrowing of the airways. Its global prevalence has attained epidemic levels and treatment options that reach beyond temporary relief of symptoms are urgently needed. Since the processes leading to clinically symptomatic asthma start early in life, we set out to systematically evaluate a neonatal immunotherapeutic based on Listeria monocytogenes (Lm) for the control of allergic sensitization. METHODS: We modified Lm to express the model allergen, ovalbumin (OVA), and tested the ability of neonatal immunization with this strain to control allergic sensitization in a mouse model of OVA-induced asthma. Mice were immunized as newborns with live or heat killed LmOVA or live Lm, followed 6 weeks later by allergic sensitization with OVA. In order to determine whether the T(H)1-polarizing effect of this vaccine vector inadvertently may exacerbate development of certain T(H)1-driven allergic diseases, mice immunized as newborns were assessed in a model of adult hypersensitivity pneumonitis (HP). RESULTS: Both LmOVA and Lm-control vaccines were highly effective in providing long-lasting protection from airway inflammation after only one immunization given perinatally. Serum antibody levels and lung cytokine production suggest that this prophylactic strategy is associated with an allergen specific T(H)1-dominated response. Specifically, LmOVA vaccinated mice displayed significantly elevated OVA-specific serum IgG2a, but no difference in anti-OVA IgE antibodies and only slightly decreased anti-OVA IgG1 antibodies. Importantly, Lm-based neonatal vaccination did not exacerbate Th1/Th17 driven HP, arguing against broad spectrum immune skewing. CONCLUSIONS: Our findings highlight the promise of early life Lm-based immunomodulatory interventions as a prophylactic strategy for allergic asthma.


Subject(s)
Adult , Animals , Humans , Infant, Newborn , Mice , Alveolitis, Extrinsic Allergic , Antibodies , Asthma , Hot Temperature , Immune System , Immunization , Immunoglobulin E , Immunoglobulin G , Inflammation , Listeria monocytogenes , Lung , Ovalbumin , Ovum , Prevalence , Vaccination , Vaccines
3.
Article in English | WPRIM (Western Pacific) | ID: wpr-132500

ABSTRACT

PURPOSE: Asthma is a chronic respiratory disorder that leads to inflammation and narrowing of the airways. Its global prevalence has attained epidemic levels and treatment options that reach beyond temporary relief of symptoms are urgently needed. Since the processes leading to clinically symptomatic asthma start early in life, we set out to systematically evaluate a neonatal immunotherapeutic based on Listeria monocytogenes (Lm) for the control of allergic sensitization. METHODS: We modified Lm to express the model allergen, ovalbumin (OVA), and tested the ability of neonatal immunization with this strain to control allergic sensitization in a mouse model of OVA-induced asthma. Mice were immunized as newborns with live or heat killed LmOVA or live Lm, followed 6 weeks later by allergic sensitization with OVA. In order to determine whether the T(H)1-polarizing effect of this vaccine vector inadvertently may exacerbate development of certain T(H)1-driven allergic diseases, mice immunized as newborns were assessed in a model of adult hypersensitivity pneumonitis (HP). RESULTS: Both LmOVA and Lm-control vaccines were highly effective in providing long-lasting protection from airway inflammation after only one immunization given perinatally. Serum antibody levels and lung cytokine production suggest that this prophylactic strategy is associated with an allergen specific T(H)1-dominated response. Specifically, LmOVA vaccinated mice displayed significantly elevated OVA-specific serum IgG2a, but no difference in anti-OVA IgE antibodies and only slightly decreased anti-OVA IgG1 antibodies. Importantly, Lm-based neonatal vaccination did not exacerbate Th1/Th17 driven HP, arguing against broad spectrum immune skewing. CONCLUSIONS: Our findings highlight the promise of early life Lm-based immunomodulatory interventions as a prophylactic strategy for allergic asthma.


Subject(s)
Adult , Animals , Humans , Infant, Newborn , Mice , Alveolitis, Extrinsic Allergic , Antibodies , Asthma , Hot Temperature , Immune System , Immunization , Immunoglobulin E , Immunoglobulin G , Inflammation , Listeria monocytogenes , Lung , Ovalbumin , Ovum , Prevalence , Vaccination , Vaccines
SELECTION OF CITATIONS
SEARCH DETAIL