Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 10(5): e0143922, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36214677

ABSTRACT

The aim of this study was to investigate the genomic features of an extensively drug-resistant (XDR) Pseudomonas aeruginosa isolate (P-469) emerging in Chile. Antibiotic susceptibility was determined by disk diffusion and "colistin agar" test. Whole-genome sequencing (WGS) was performed by the Illumina NextSeq 2000 platform, and epidemiologically and clinically relevant data (i.e., sequence-type, serotype, mobile genetic elements, virulome, resistome, plasmidome, prophages, and CRISPR-Cas systems) were retrieved using multiple bioinformatic tools. The P-469 strain displayed an XDR profile, remaining susceptible to colistin. Genomic analysis revealed that this isolate belonged to the "high-risk" clone ST654 (CC654), serotype O4, and genotype exoS+. Strikingly, two CRISPR-Cas systems, five intact prophages sequences, and a broad resistome that included blaNDM-1 and the novel blaVIM-80 carbapenemase genes were predicted. Our results revealed the genomic characteristics of P. aeruginosa belonging to the high-risk clone ST654/O4 coproducing NDM-1 and VIM-80 in Chile, supporting that genomic surveillance is necessary to track the emergence and spread of epidemiologically successful WHO's critical priority pathogens in order to prevent their rapid dissemination.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Humans , Pseudomonas aeruginosa/genetics , Colistin , Pseudomonas Infections/epidemiology , Microbial Sensitivity Tests , Agar , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , Clone Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...