Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxins (Basel) ; 13(3)2021 03 07.
Article in English | MEDLINE | ID: mdl-33800029

ABSTRACT

Indoxyl sulfate (IS) is involved in the progression of chronic kidney disease (CKD) and in its cardiovascular complications. One of the approaches proposed to decrease IS is the administration of synbiotics. This work aimed to search for a probiotic strain capable to decrease serum IS levels and mix it with two prebiotics (inulin and fructooligosaccharide (FOS)) to produce a putative synbiotic and test it in a rat CKD model. Two groups of Sprague-Dawley rats were nephrectomized. One group (Lac) received the mixture for 16 weeks in drinking water and the other no (Nef). A control group (C) included sham-nephrectomized rats. Serum creatinine and IS concentrations were measured using high-performance liquid chromatography with diode array detector (HPLC-DAD). Optical microscopy and two-photon excitation microscopy was used to study kidney and heart samples. The Lac group, which received the synbiotic, reduced IS by 0.8% while the Nef group increased it by 38.8%. Histological analysis of kidneys showed that the Lac group increased fibrotic areas by 12% and the Nef group did it by 25%. The synbiotic did not reduce cardiac fibrosis. Therefore, the putative synbiotic showed that function reducing IS and the progression of CKD in a rat model, but no heart protection was observed.


Subject(s)
Heart Diseases/therapy , Indican/blood , Inulin/administration & dosage , Kidney/metabolism , Lactobacillus delbrueckii/physiology , Oligosaccharides/administration & dosage , Renal Insufficiency, Chronic/therapy , Synbiotics , Toxins, Biological/blood , Animals , Creatinine/blood , Disease Models, Animal , Disease Progression , Female , Fibrosis , Heart Diseases/blood , Heart Diseases/microbiology , Heart Diseases/pathology , Kidney/pathology , Myocardium/metabolism , Myocardium/pathology , Rats, Sprague-Dawley , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/microbiology , Renal Insufficiency, Chronic/pathology
2.
Infect Genet Evol ; 90: 104779, 2021 06.
Article in English | MEDLINE | ID: mdl-33639305

ABSTRACT

Listeria monocytogenes is a pathogen causing serious or mortal infections in human risk populations. Its infectivity is in part due to its ability to infect diverse eukaryotic cells. Since several bacteria can enter into yeast cells, including Candida albicans, the aims of this work were to evaluate if L. monocytogenes was able to harbor, retaining its viability, within C. albicans cells and to evaluate the effect of temperature and an antibiotic as stressing factors in its rate of entry into yeast cells. Both microorganisms were co-incubated in BHI broth during 48 h and the entry of bacteria into yeast cells was evaluated at different times. Then, yeasts free of extracellular bacteria were obtained seeding samples of the co-culture on YGC agar, which contains chloramphenicol, to obtain extracellular bacteria-free yeasts. These extracellular bacteria free yeasts were used to search for bacterial DNA in total yeast DNA and to evaluate the viability of intra-yeast bacteria. Finally, the effect of temperature and of chloramphenicol as inducers of stress on the rate of bacterial entry into yeast cells were investigated. After co-culturing both microorganisms, wet mount optical microscopy showed the presence of moving bacteria within yeasts and transmission electron microscopy confirmed the presence of intra-yeast bacteria. PCR allowed to amplify L. monocytogenes iap gene in C. albicans total DNA obtained from yeasts free of extracellular bacteria. Moreover, the SYTO 9 green fluorescence observed in bacterial cells within vacuoles of yeasts suggests that intra-yeast bacteria remain viable. Furthermore, the entry of L. monocytogenes into yeasts cells was favored by the presence of stressing factors (chloramphenicol and temperature). Therefore, yeasts may be reservoirs of viable L. monocytogenes and might spread them to the following generations of yeasts.


Subject(s)
Candida albicans/physiology , Disease Reservoirs/microbiology , Listeria monocytogenes/physiology , Vacuoles/microbiology , DNA, Bacterial/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...