Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Microbiol ; 203(8): 5075-5084, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34302508

ABSTRACT

Bioremediation through biodegradation is applied for cleaning up several environmental pollutions including petroleum oil spill containing petrol, diesel, mobil, kerosene, lubricating, etc. which have devastated several endangered terrestrial and aquatic ecosystems. Therefore, the current research was aimed to isolate and identify diesel degrading bacteria from the petroleum waste dumping site and determined their degrading efficiency. The bacterial strains were isolated through a minimum salt medium supplemented with 2% diesel as the sole carbon source. The bacteria were identified by morphological, biochemical characterization, and 16S rRNA gene sequencing. The optimized growth pattern was evaluated by utilization of a wide range of temperatures (25, 30, 35, and 40 °C) and pH (5,6,7 and 8) as well as different concentrations of diesel (2, 3, 5and 7%). Finally, the degradation rate was determined by measuring the residual diesel after 7, 14, and 21 days of incubation. The study isolated Enterobacter ludwigii, Enterobacter mori, Acinetobacter baumannii, and Cedecea davisae where all are gram-negative rod-shaped bacilli. All the bacterial strains utilized the diesel at their best at 30 °C and pH 7, among them, A. baumannii and C. davisae exhibited the best degrading efficiency at all applied concentrations. Finally, the determination of degradation rate (%) through gravimetrical analysis has confirmed the potency of A. Baumannii and C. davisae where the degradation rate was around 61 and 52% respectively after 21 days of incubation period with 10% diesel. The study concludes that all of those isolated bacterial consortiums, especially A. baumannii and C. davisae could be allocated as active agents used for bioremediation to detoxify the diesel-containing contaminated sites in a cost-effective and eco-friendly way.


Subject(s)
Acinetobacter , Petroleum , Soil Pollutants , Acinetobacter/genetics , Biodegradation, Environmental , Ecosystem , Enterobacter/genetics , Enterobacteriaceae , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Waste Disposal Facilities
2.
Mol Biol Rep ; 48(1): 85-96, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33454909

ABSTRACT

Apoptosis plays a pivotal role in the exclusion of abnormal cells without any ruin of surrounding healthy cells. Generally, it occurs through an orderly and autonomously process which is controlled by proper function of various genes. Therefore, the current experiments detect the expression level/pattern of those genes to confirm the involvement of extrinsic and intrinsic pathway using Basella alba leaf (BAL). Several fractions after gel filtration chromatography of BAL extract have been pooled to evaluates its apoptosis induction potentiality on Ehrlich's Ascites Carcinoma (EAC) cells through conducting a number of bio-assays such as cell growth inhibition assay, fluorescence and optical microscopy, DNA fragmentation assay and gene expression analysis etc. The pooled fractions of BAL showed 12-56% inhibitory effect on EAC cell line at the concentration range of 25-400 µg/ml that was determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. They also exhibited excellent cell growth inhibition at in vivo and in vitro condition when treated with 10, 20 and 40 mg/kg day. After administration of six consequent days, significant morphological features of apoptosis were observed in EAC cells under both fluorescence and optical microscope which was further supported by DNA fragmentation assay. The polymerase chain reaction amplification of bax, bcl-2 (B-cell lymphoma 2), p53, tumor necrosis factor-α, Fas, NF-kß (Nuclear factor-Kappa-B), PARP-1 (Poly (ADP-ribose) polymerase), Cyt-c cas-8, cas-9 and cas-3 revealed that the experimental sample able to induce apoptosis in both extrinsic and intrinsic pathways through altering the gene expression. The current findings suggest that sample from BAL occupy wonderful competence to induce cell apoptosis and become an ideal resource for cancer treatment.


Subject(s)
Apoptosis/drug effects , Carcinoma, Ehrlich Tumor/drug therapy , Caryophyllales/chemistry , Neoplasm Proteins/genetics , Plant Extracts/pharmacology , Animals , Carcinoma, Ehrlich Tumor/genetics , Carcinoma, Ehrlich Tumor/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Plant Extracts/chemistry , Plant Leaves/chemistry , Poly (ADP-Ribose) Polymerase-1/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Signal Transduction/drug effects , Tumor Suppressor Protein p53/genetics
3.
J Food Biochem ; 44(8): e13342, 2020 08.
Article in English | MEDLINE | ID: mdl-32578902

ABSTRACT

A safer natural alternative to treat neoplastic cells by inducing apoptosis is a prime requisite. Therefore, the current study was to evaluate the antiproliferative activity of Morus laevigata, a wild-type Mulberry species. Antioxidant and cytotoxic activity of aqueous extracts of M. laevigata leaf (MLL) and M. laevigata bark (MLB) were evaluated. The in vivo cell growth inhibition was assessed on Ehrlich's ascites carcinoma (EAC) bearing mice model. Fluorescent microscopy and expression of PARP-1, Bax, and Bcl-2 through qPCR were performed to evaluate apoptosis. MLL and MLB extracts show promising antioxidant property with an IC50 value of 186.76 µg/ml and 352.97 µg/ml, respectively, with a decent LD50 value of 99.16 µg/ml and 92.54 µg/ml for MLL and MLB extract, respectively, indicated notable cytotoxicity. Cell growth inhibition was observed using MLL and MLB extracts were 68.33% and 48.66%, respectively. The morphological alteration, DNA fragmentation, and differential expression of Bax, Bcl-2, and PARP-1 confirm the induction of the intrinsic pathway of apoptosis. PRACTICAL APPLICATIONS: Plant-based medicine always plays a tremendous role in preventing several fatal diseases like cancer. The study evaluated the anticancer activity of a wild-type mulberry. Moreover, the potent antioxidant activity of the plant makes it possible to be a great candidate for cancer remedy. Besides, the molecular expression of the genes related to apoptosis confirms the plant's bioactive compounds could be a drug lead to neoplastic cells in the future. Presences of an immense antioxidant properties urge that they can be contribute in cancer treatment through the cell death pathways.


Subject(s)
Carcinoma, Ehrlich Tumor , Morus , Animals , Apoptosis , Ascites , Carcinoma, Ehrlich Tumor/drug therapy , Mice , Plant Extracts/pharmacology , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-bcl-2 , bcl-2-Associated X Protein/genetics
4.
Article in English | MEDLINE | ID: mdl-30581479

ABSTRACT

Cancer is a class of diseases characterized by uncontrolled cell growth. The current treatment options of cancer are radiotherapy, chemotherapy, hormone therapy, and surgery, where all of them have unpleasant side effects. Due to their adverse side effects, it is challenging to develop new drug for cancer treatment. Hence, the scientists are trying to seek for noble compounds from natural sources to treat cancer. Therefore, in the present investigation, a widely consumable vegetable Basella alba was subjected to evaluate its antiproliferative effect along with molecular signaling of apoptosis in Ehrlich ascites carcinoma (EAC) cell line. Cell growth inhibition was determined by haemocytometer whereas apoptosis of cancer cells were studied by florescence microscope using Hoechst-33342 stain and result was supported by DNA fragmentation and certain cancer related genes expression through PCR analysis. B. alba leaf and seed extract exhibit a considerable scavenging activity in comparison to a standard antioxidant BHT. Moreover, the leaf and seed extracts were able to agglutinate 2% RBC of goat blood at minimum 12.5µg/ml and 50.0µg/ml concentration, respectively. A significant cytotoxic activity was also found in both leaf and seed extract. In haemocytometic observation, the leaf and seed extracts exhibit about 62.54±2.41% and 53.96±2.34% cell growth inhibition, respectively, whereas standard anticancer drug Bleomycin showed 79.43±1.92% growth inhibition. Morphological alteration under fluorescence microscope showed nuclear condensation and fragmentation which is the sign of apoptosis. Apoptosis induction was also confirmed by DNA laddering in leaf and seed treated EAC cells. Upregulation of the tumor suppressor gene P53 and downregulation of antiapoptotic gene Bcl-2 enumerate apoptosis induction. Therefore, current study manifested that leaf and seed extracts of B. alba have antiproliferative activity against EAC cell line and can be a potent source of anticancer agents to treat cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...