Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Medicina (Kaunas) ; 60(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38256282

ABSTRACT

The atopic march encompasses a sequence of allergic conditions, including atopic dermatitis, food allergy, allergic rhinitis, and asthma, that frequently develop in a sequential pattern within the same individual. It was introduced as a conceptual framework aimed at elucidating the developmental trajectory of allergic conditions during childhood. Following the introduction of this concept, it was initially believed that the atopic march represented the sole and definitive trajectory of the development of allergic diseases. However, this perspective evolved with the emergence of new longitudinal studies, which revealed that the evolution of allergic diseases is far more intricate. It involves numerous immunological pathological mechanisms and may not align entirely with the traditional concept of the atopic march. The objective of our review is to portray the atopic march alongside other patterns in the development of childhood allergic diseases, with a specific emphasis on the potential for a personalized approach to the prevention, diagnosis, and treatment of atopic conditions.


Subject(s)
Asthma , Dermatitis, Atopic , Rhinitis, Allergic , Humans , Multimorbidity , Dermatitis, Atopic/epidemiology , Dermatitis, Atopic/therapy , Asthma/epidemiology , Asthma/therapy , Rhinitis, Allergic/epidemiology , Rhinitis, Allergic/therapy
2.
Nat Rev Mol Cell Biol ; 22(8): 511-528, 2021 08.
Article in English | MEDLINE | ID: mdl-33953379

ABSTRACT

Understanding how chromatin is folded in the nucleus is fundamental to understanding its function. Although 3D genome organization has been historically difficult to study owing to a lack of relevant methodologies, major technological breakthroughs in genome-wide mapping of chromatin contacts and advances in imaging technologies in the twenty-first century considerably improved our understanding of chromosome conformation and nuclear architecture. In this Review, we discuss methods of 3D genome organization analysis, including sequencing-based techniques, such as Hi-C and its derivatives, Micro-C, DamID and others; microscopy-based techniques, such as super-resolution imaging coupled with fluorescence in situ hybridization (FISH), multiplex FISH, in situ genome sequencing and live microscopy methods; and computational and modelling approaches. We describe the most commonly used techniques and their contribution to our current knowledge of nuclear architecture and, finally, we provide a perspective on up-and-coming methods that open possibilities for future major discoveries.


Subject(s)
Chromatin/chemistry , Genome , Chromatin/genetics , Chromatin/metabolism , Chromosome Mapping , Chromosomes/chemistry , Chromosomes/genetics , Chromosomes/metabolism , Computational Biology , High-Throughput Nucleotide Sequencing , Humans , Microscopy , Models, Molecular , Sequence Analysis, DNA
3.
Nat Genet ; 52(11): 1151-1157, 2020 11.
Article in English | MEDLINE | ID: mdl-33077913

ABSTRACT

The genome folds into a hierarchy of three-dimensional structures within the nucleus. At the sub-megabase scale, chromosomes form topologically associating domains (TADs)1-4. However, how TADs fold in single cells is elusive. Here, we reveal TAD features inaccessible to cell population analysis by using super-resolution microscopy. TAD structures and physical insulation associated with their borders are variable between individual cells, yet chromatin intermingling is enriched within TADs compared to adjacent TADs in most cells. The spatial segregation of TADs is further exacerbated during cell differentiation. Favored interactions within TADs are regulated by cohesin and CTCF through distinct mechanisms: cohesin generates chromatin contacts and intermingling while CTCF prevents inter-TAD contacts. Furthermore, TADs are subdivided into discrete nanodomains, which persist in cells depleted of CTCF or cohesin, whereas disruption of nucleosome contacts alters their structural organization. Altogether, these results provide a physical basis for the folding of individual chromosomes at the nanoscale.


Subject(s)
Chromatin/chemistry , Embryonic Stem Cells/ultrastructure , Protein Domains , Animals , Cell Differentiation/genetics , Cell Line , Chromosome Painting , Drosophila/genetics , In Situ Hybridization, Fluorescence , Male , Mice , Mice, Inbred C57BL , Molecular Conformation , Nanostructures , Nuclear Microscopy
4.
Cell ; 181(5): 1062-1079.e30, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32386547

ABSTRACT

Expansions of amino acid repeats occur in >20 inherited human disorders, and many occur in intrinsically disordered regions (IDRs) of transcription factors (TFs). Such diseases are associated with protein aggregation, but the contribution of aggregates to pathology has been controversial. Here, we report that alanine repeat expansions in the HOXD13 TF, which cause hereditary synpolydactyly in humans, alter its phase separation capacity and its capacity to co-condense with transcriptional co-activators. HOXD13 repeat expansions perturb the composition of HOXD13-containing condensates in vitro and in vivo and alter the transcriptional program in a cell-specific manner in a mouse model of synpolydactyly. Disease-associated repeat expansions in other TFs (HOXA13, RUNX2, and TBP) were similarly found to alter their phase separation. These results suggest that unblending of transcriptional condensates may underlie human pathologies. We present a molecular classification of TF IDRs, which provides a framework to dissect TF function in diseases associated with transcriptional dysregulation.


Subject(s)
DNA Repeat Expansion/genetics , Homeodomain Proteins/genetics , Transcription Factors/genetics , Alanine/genetics , Animals , Base Sequence/genetics , DNA Repeat Expansion/physiology , Disease Models, Animal , Homeodomain Proteins/metabolism , Humans , Male , Mice , Mutation/genetics , Pedigree , Syndactyly/genetics , Transcription Factors/metabolism
5.
J Mol Biol ; 432(3): 676-681, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31689436

ABSTRACT

How chromosomes are organized within the tridimensional space of the nucleus and how can this organization affect genome function have been long-standing questions on the path to understanding genome activity and its link to disease. In the last decade, high-throughput chromosome conformation capture techniques, such as Hi-C, have facilitated the discovery of new principles of genome folding. Chromosomes are folded in multiple high-order structures, with local contacts between enhancers and promoters, intermediate-level contacts forming Topologically Associating Domains (TADs) and higher-order chromatin structures sequestering chromatin into active and repressive compartments. However, despite the increasing evidence that genome organization can influence its function, we are still far from understanding the underlying mechanisms. Deciphering these mechanisms represents a major challenge for the future, which large, international initiatives, such as 4DN, HCA and LifeTime, aim to collaboratively tackle by using a conjunction of state-of-the-art population-based and single-cell approaches.


Subject(s)
Chromatin/chemistry , Chromatin/metabolism , Gene Expression Regulation , Genome , Macromolecular Substances/chemistry , Macromolecular Substances/metabolism , Molecular Conformation , Animals , Biomedical Research/methods , Biomedical Research/trends , Molecular Biology/methods , Molecular Biology/trends
6.
Nat Genet ; 51(8): 1263-1271, 2019 08.
Article in English | MEDLINE | ID: mdl-31358994

ABSTRACT

The genome is organized in three-dimensional units called topologically associating domains (TADs), through a process dependent on the cooperative action of cohesin and the DNA-binding factor CTCF. Genomic rearrangements of TADs have been shown to cause gene misexpression and disease, but genome-wide depletion of CTCF has no drastic effects on transcription. Here, we investigate TAD function in vivo in mouse limb buds at the Sox9-Kcnj2 locus. We show that the removal of all major CTCF sites at the boundary and within the TAD resulted in a fusion of neighboring TADs, without major effects on gene expression. Gene misexpression and disease phenotypes, however, were achieved by redirecting regulatory activity through inversions and/or the repositioning of boundaries. Thus, TAD structures provide robustness and precision but are not essential for developmental gene regulation. Aberrant disease-related gene activation is not induced by a mere loss of insulation but requires CTCF-dependent redirection of enhancer-promoter contacts.


Subject(s)
CCCTC-Binding Factor/metabolism , Cell Cycle Proteins/metabolism , Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/metabolism , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Potassium Channels, Inwardly Rectifying/metabolism , SOX9 Transcription Factor/metabolism , Animals , CCCTC-Binding Factor/genetics , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Female , Male , Mice , Mice, Inbred C57BL , Potassium Channels, Inwardly Rectifying/genetics , Promoter Regions, Genetic , SOX9 Transcription Factor/genetics , Cohesins
7.
Proc Natl Acad Sci U S A ; 116(25): 12390-12399, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31147463

ABSTRACT

Long-range gene regulation involves physical proximity between enhancers and promoters to generate precise patterns of gene expression in space and time. However, in some cases, proximity coincides with gene activation, whereas, in others, preformed topologies already exist before activation. In this study, we investigate the preformed configuration underlying the regulation of the Shh gene by its unique limb enhancer, the ZRS, in vivo during mouse development. Abrogating the constitutive transcription covering the ZRS region led to a shift within the Shh-ZRS contacts and a moderate reduction in Shh transcription. Deletion of the CTCF binding sites around the ZRS resulted in the loss of the Shh-ZRS preformed interaction and a 50% decrease in Shh expression but no phenotype, suggesting an additional, CTCF-independent mechanism of promoter-enhancer communication. This residual activity, however, was diminished by combining the loss of CTCF binding with a hypomorphic ZRS allele, resulting in severe Shh loss of function and digit agenesis. Our results indicate that the preformed chromatin structure of the Shh locus is sustained by multiple components and acts to reinforce enhancer-promoter communication for robust transcription.


Subject(s)
Chromatin/metabolism , Extremities/embryology , Hedgehog Proteins/genetics , Transcription, Genetic , Animals , Binding Sites , CCCTC-Binding Factor/metabolism , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Down-Regulation , Enhancer Elements, Genetic , Membrane Proteins/genetics , Mice , Promoter Regions, Genetic , Cohesins
8.
Nat Genet ; 50(10): 1463-1473, 2018 10.
Article in English | MEDLINE | ID: mdl-30262816

ABSTRACT

The regulatory specificity of enhancers and their interaction with gene promoters is thought to be controlled by their sequence and the binding of transcription factors. By studying Pitx1, a regulator of hindlimb development, we show that dynamic changes in chromatin conformation can restrict the activity of enhancers. Inconsistent with its hindlimb-restricted expression, Pitx1 is controlled by an enhancer (Pen) that shows activity in forelimbs and hindlimbs. By Capture Hi-C and three-dimensional modeling of the locus, we demonstrate that forelimbs and hindlimbs have fundamentally different chromatin configurations, whereby Pen and Pitx1 interact in hindlimbs and are physically separated in forelimbs. Structural variants can convert the inactive into the active conformation, thereby inducing Pitx1 misexpression in forelimbs, causing partial arm-to-leg transformation in mice and humans. Thus, tissue-specific three-dimensional chromatin conformation can contribute to enhancer activity and specificity in vivo and its disturbance can result in gene misexpression and disease.


Subject(s)
Chromatin/chemistry , Enhancer Elements, Genetic/physiology , Hindlimb/embryology , Molecular Conformation , Morphogenesis/genetics , Paired Box Transcription Factors/physiology , Animals , CRISPR-Cas Systems , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly/genetics , DNA/chemistry , DNA/metabolism , Embryo, Mammalian , Forelimb/embryology , Forelimb/metabolism , Gene Expression Regulation, Developmental/genetics , Hindlimb/metabolism , Mice , Mice, Transgenic , Nucleic Acid Conformation , Paired Box Transcription Factors/genetics
9.
PLoS Genet ; 13(1): e1006567, 2017 01.
Article in English | MEDLINE | ID: mdl-28103242

ABSTRACT

Homeotic genes code for key transcription factors (HOX-TFs) that pattern the animal body plan. During embryonic development, Hox genes are expressed in overlapping patterns and function in a partially redundant manner. In vitro biochemical screens probing the HOX-TF sequence specificity revealed largely overlapping sequence preferences, indicating that co-factors might modulate the biological function of HOX-TFs. However, due to their overlapping expression pattern, high protein homology, and insufficiently specific antibodies, little is known about their genome-wide binding preferences. In order to overcome this problem, we virally expressed tagged versions of limb-expressed posterior HOX genes (HOXA9-13, and HOXD9-13) in primary chicken mesenchymal limb progenitor cells (micromass). We determined the effect of each HOX-TF on cellular differentiation (chondrogenesis) and gene expression and found that groups of HOX-TFs induce distinct regulatory programs. We used ChIP-seq to determine their individual genome-wide binding profiles and identified between 12,721 and 28,572 binding sites for each of the nine HOX-TFs. Principal Component Analysis (PCA) of binding profiles revealed that the HOX-TFs are clustered in two subgroups (Group 1: HOXA/D9, HOXA/D10, HOXD12, and HOXA13 and Group 2: HOXA/D11 and HOXD13), which are characterized by differences in their sequence specificity and by the presence of cofactor motifs. Specifically, we identified CTCF binding sites in Group 1, indicating that this subgroup of HOX-proteins cooperates with CTCF. We confirmed this interaction by an independent biological assay (Proximity Ligation Assay) and demonstrated that CTCF is a novel HOX cofactor that specifically associates with Group 1 HOX-TFs, pointing towards a possible interplay between HOX-TFs and chromatin architecture.


Subject(s)
Gene Expression Regulation, Developmental , Genome , Homeodomain Proteins/metabolism , Repressor Proteins/metabolism , Transcriptional Activation , Animals , CCCTC-Binding Factor , Chickens , Chondrogenesis , Chromatin/metabolism , Mesoderm/metabolism , Protein Binding
10.
Genome Res ; 27(2): 223-233, 2017 02.
Article in English | MEDLINE | ID: mdl-27923844

ABSTRACT

Complex regulatory landscapes control the pleiotropic transcriptional activities of developmental genes. For most genes, the number, location, and dynamics of their associated regulatory elements are unknown. In this work, we characterized the three-dimensional chromatin microarchitecture and regulatory landscape of 446 limb-associated gene loci in mouse using Capture-C, ChIP-seq, and RNA-seq in forelimb, hindlimb at three developmental stages, and midbrain. The fine mapping of chromatin interactions revealed a strong preference for functional genomic regions such as repressed or active domains. By combining chromatin marks and interaction peaks, we annotated more than 1000 putative limb enhancers and their associated genes. Moreover, the analysis of chromatin interactions revealed two regimes of chromatin folding, one producing interactions stable across tissues and stages and another one associated with tissue and/or stage-specific interactions. Whereas stable interactions associate strongly with CTCF/RAD21 binding, the intensity of variable interactions correlates with changes in underlying chromatin modifications, specifically at the viewpoint and at the interaction site. In conclusion, this comprehensive data set provides a resource for the characterization of hundreds of limb-associated regulatory landscapes and a framework to interpret the chromatin folding dynamics observed during embryogenesis.


Subject(s)
Chromatin/genetics , Enhancer Elements, Genetic , Transcription Factors/genetics , Transcriptional Activation/genetics , Animals , Binding Sites , Chromatin Immunoprecipitation , Extremities/growth & development , Gene Expression Regulation, Developmental , Histones/genetics , Mice , Promoter Regions, Genetic
11.
Nature ; 538(7624): 265-269, 2016 Oct 13.
Article in English | MEDLINE | ID: mdl-27706140

ABSTRACT

Chromosome conformation capture methods have identified subchromosomal structures of higher-order chromatin interactions called topologically associated domains (TADs) that are separated from each other by boundary regions. By subdividing the genome into discrete regulatory units, TADs restrict the contacts that enhancers establish with their target genes. However, the mechanisms that underlie partitioning of the genome into TADs remain poorly understood. Here we show by chromosome conformation capture (capture Hi-C and 4C-seq methods) that genomic duplications in patient cells and genetically modified mice can result in the formation of new chromatin domains (neo-TADs) and that this process determines their molecular pathology. Duplications of non-coding DNA within the mouse Sox9 TAD (intra-TAD) that cause female to male sex reversal in humans, showed increased contact of the duplicated regions within the TAD, but no change in the overall TAD structure. In contrast, overlapping duplications that extended over the next boundary into the neighbouring TAD (inter-TAD), resulted in the formation of a new chromatin domain (neo-TAD) that was isolated from the rest of the genome. As a consequence of this insulation, inter-TAD duplications had no phenotypic effect. However, incorporation of the next flanking gene, Kcnj2, in the neo-TAD resulted in ectopic contacts of Kcnj2 with the duplicated part of the Sox9 regulatory region, consecutive misexpression of Kcnj2, and a limb malformation phenotype. Our findings provide evidence that TADs are genomic regulatory units with a high degree of internal stability that can be sculptured by structural genomic variations. This process is important for the interpretation of copy number variations, as these variations are routinely detected in diagnostic tests for genetic disease and cancer. This finding also has relevance in an evolutionary setting because copy-number differences are thought to have a crucial role in the evolution of genome complexity.


Subject(s)
Chromatin Assembly and Disassembly/genetics , DNA Copy Number Variations/genetics , Disease/genetics , Gene Duplication/genetics , Animals , DNA/genetics , Facies , Female , Fibroblasts , Fingers/abnormalities , Foot Deformities, Congenital/genetics , Gene Expression , Genomics , Hand Deformities, Congenital/genetics , Male , Mice , Phenotype , SOX9 Transcription Factor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...