Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38885332

ABSTRACT

Most children with medulloblastoma (MB) achieve remission, but some face very aggressive metastatic tumors. Their dismal outcome highlights the critical need to advance therapeutic approaches that benefit such high-risk patients. Minnelide, a clinically relevant analog of the natural product triptolide, has oncostatic activity in both preclinical and early clinical settings. Despite its efficacy and tolerable toxicity, this compound has not been evaluated in MB. Utilizing a bioinformatic dataset that integrates cellular drug response data with gene expression, we predicted that Group 3 (G3) MB, which has a poor five-year survival, would be sensitive to triptolide/Minnelide. We subsequently showed that both triptolide and Minnelide attenuate the viability of G3 MB cells ex vivo. Transcriptomic analyses identified MYC signaling, a pathologically relevant driver of G3 MB, as a downstream target of this class of drugs. We validated this MYC dependency in G3 MB cells and showed that triptolide exerts its efficacy by reducing both MYC transcription and MYC protein stability. Importantly, Minnelide acted on MYC to reduce tumor growth and leptomeningeal spread, which resulted in improved survival of G3 MB animal models. Moreover, Minnelide improved the efficacy of adjuvant chemotherapy, further highlighting its potential for the treatment of MYC-driven G3 MB patients.

2.
Sci Rep ; 14(1): 9284, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38654040

ABSTRACT

Bromodomain and extra-terminal domain (BET) proteins are therapeutic targets in several cancers including the most common malignant adult brain tumor glioblastoma (GBM). Multiple small molecule inhibitors of BET proteins have been utilized in preclinical and clinical studies. Unfortunately, BET inhibitors have not shown efficacy in clinical trials enrolling GBM patients. One possible reason for this may stem from resistance mechanisms that arise after prolonged treatment within a clinical setting. However, the mechanisms and timeframe of resistance to BET inhibitors in GBM is not known. To identify the temporal order of resistance mechanisms in GBM we performed quantitative proteomics using multiplex-inhibitor bead mass spectrometry and demonstrated that intrinsic resistance to BET inhibitors in GBM treatment occurs rapidly within hours and involves the fibroblast growth factor receptor 1 (FGFR1) protein. Additionally, small molecule inhibition of BET proteins and FGFR1 simultaneously induces synergy in reducing GBM tumor growth in vitro and in vivo. Further, FGFR1 knockdown synergizes with BET inhibitor mediated reduction of GBM cell proliferation. Collectively, our studies suggest that co-targeting BET and FGFR1 may dampen resistance mechanisms to yield a clinical response in GBM.


Subject(s)
Brain Neoplasms , Bromodomain Containing Proteins , Cell Proliferation , Drug Resistance, Neoplasm , Glioblastoma , Receptor, Fibroblast Growth Factor, Type 1 , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Humans , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Mice , Xenograft Model Antitumor Assays , Proteomics/methods , Proteins/metabolism , Proteins/antagonists & inhibitors
3.
Sci Rep ; 11(1): 23370, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34862404

ABSTRACT

Bromodomain and extraterminal domain (BET) proteins have emerged as therapeutic targets in multiple cancers, including the most common primary adult brain tumor glioblastoma (GBM). Although several BET inhibitors have entered clinical trials, few are brain penetrant. We have generated UM-002, a novel brain penetrant BET inhibitor that reduces GBM cell proliferation in vitro and in a human cerebral brain organoid model. Since UM-002 is more potent than other BET inhibitors, it could potentially be developed for GBM treatment. Furthermore, UM-002 treatment reduces the expression of cell-cycle related genes in vivo and reduces the expression of invasion related genes within the non-proliferative cells present in tumors as measured by single cell RNA-sequencing. These studies suggest that BET inhibition alters the transcriptional landscape of GBM tumors, which has implications for designing combination therapies. Importantly, they also provide an integrated dataset that combines in vitro and ex vivo studies with in vivo single-cell RNA-sequencing to characterize a novel BET inhibitor in GBM.


Subject(s)
Antineoplastic Agents/administration & dosage , Brain Neoplasms/drug therapy , Gene Expression Profiling/methods , Glioblastoma/drug therapy , Pyridines/administration & dosage , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Brain Neoplasms/genetics , Cell Cycle/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks/drug effects , Glioblastoma/genetics , Humans , Male , Mice , Molecular Structure , Neoplasm Invasiveness , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology , Sequence Analysis, RNA , Single-Cell Analysis , Xenograft Model Antitumor Assays
5.
Nat Commun ; 9(1): 5315, 2018 12 14.
Article in English | MEDLINE | ID: mdl-30552330

ABSTRACT

Glioblastoma (GBM) is the most common primary adult brain tumor. Despite extensive efforts, the median survival for GBM patients is approximately 14 months. GBM therapy could benefit greatly from patient-specific targeted therapies that maximize treatment efficacy. Here we report a platform termed SynergySeq to identify drug combinations for the treatment of GBM by integrating information from The Cancer Genome Atlas (TCGA) and the Library of Integrated Network-Based Cellular Signatures (LINCS). We identify differentially expressed genes in GBM samples and devise a consensus gene expression signature for each compound using LINCS L1000 transcriptional profiling data. The SynergySeq platform computes disease discordance and drug concordance to identify combinations of FDA-approved drugs that induce a synergistic response in GBM. Collectively, our studies demonstrate that combining disease-specific gene expression signatures with LINCS small molecule perturbagen-response signatures can identify preclinical combinations for GBM, which can potentially be tested in humans.


Subject(s)
Computational Biology/methods , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/drug therapy , Glioblastoma/genetics , Transcriptome/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Datasets as Topic , Drug Combinations , Drug Discovery/methods , Drug Screening Assays, Antitumor , Drug Synergism , Gene Expression Profiling , Gene Library , Gene Regulatory Networks , Humans , Multigene Family , Treatment Outcome , United States , United States Food and Drug Administration/standards
6.
Cancer Cell ; 33(6): 1111-1127.e5, 2018 06 11.
Article in English | MEDLINE | ID: mdl-29894694

ABSTRACT

Chromatin-modifying enzymes, and specifically the protein arginine methyltransferases (PRMTs), have emerged as important targets in cancer. Here, we investigated the role of CARM1 in normal and malignant hematopoiesis. Using conditional knockout mice, we show that loss of CARM1 has little effect on normal hematopoiesis. Strikingly, knockout of Carm1 abrogates both the initiation and maintenance of acute myeloid leukemia (AML) driven by oncogenic transcription factors. We show that CARM1 knockdown impairs cell-cycle progression, promotes myeloid differentiation, and ultimately induces apoptosis. Finally, we utilize a selective, small-molecule inhibitor of CARM1 to validate the efficacy of CARM1 inhibition in leukemia cells in vitro and in vivo. Collectively, this work suggests that targeting CARM1 may be an effective therapeutic strategy for AML.


Subject(s)
Gene Expression Regulation, Leukemic , Hematopoiesis/genetics , Leukemia, Myeloid/genetics , Protein-Arginine N-Methyltransferases/genetics , Acute Disease , Animals , Apoptosis/genetics , Cell Cycle/genetics , Cell Line, Tumor , Gene Expression Profiling , Humans , Kaplan-Meier Estimate , Leukemia, Myeloid/metabolism , Leukemia, Myeloid/pathology , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mice, Transgenic , Protein-Arginine N-Methyltransferases/metabolism
7.
Front Pharmacol ; 9: 218, 2018.
Article in English | MEDLINE | ID: mdl-29615902

ABSTRACT

Glioblastoma multiforme (GBM) is the most malignant primary adult brain tumor. The current standard of care is surgical resection, radiation, and chemotherapy treatment, which extends life in most cases. Unfortunately, tumor recurrence is nearly universal and patients with recurrent glioblastoma typically survive <1 year. Therefore, new therapies and therapeutic combinations need to be developed that can be quickly approved for use in patients. However, in order to gain approval, therapies need to be safe as well as effective. One possible means of attaining rapid approval is repurposing FDA approved compounds for GBM therapy. However, candidate compounds must be able to penetrate the blood-brain barrier (BBB) and therefore a selection process has to be implemented to identify such compounds that can eliminate GBM tumor expansion. We review here psychiatric and non-psychiatric compounds that may be effective in GBM, as well as potential drugs targeting cell death pathways. We also discuss the potential of data-driven computational approaches to identify compounds that induce cell death in GBM cells, enabled by large reference databases such as the Library of Integrated Network Cell Signatures (LINCS). Finally, we argue that identifying pathways dysregulated in GBM in a patient specific manner is essential for effective repurposing in GBM and other gliomas.

SELECTION OF CITATIONS
SEARCH DETAIL
...