Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ScientificWorldJournal ; 2022: 3693869, 2022.
Article in English | MEDLINE | ID: mdl-36408194

ABSTRACT

The size of nanoparticles (NPs) allows them to accumulate in plants, and they affect plant growth by altering the size of leaves and roots and affecting their photosynthetic reactions by altering the composition of proteins in the electron transport chain, chlorophyll biosynthesis, and carbohydrate synthesis reactions. Plants play an important role on Earth as nutrient producers in all trophic food webs by producing oxygen, absorbing carbon dioxide, and synthesizing edible carbohydrates during photosynthesis. In this study, Fe3O4 and ZnO NPs at various concentrations (0, 1, 2, and 4 mg/l) were used to investigate the effect of NPs on plant morphological parameters and photosynthesis intensity, determining the amount of chlorophyll and the absorption of their light spectrum in common wheat (Triticum aestivum L.). Fe3O4 (25 nm, 2 mg/l, and 4 mg/l) and ZnO (32 nm, 4 mg/l) significantly increased the leaf length of common wheat seedlings. However, Fe3O4 NPs (25 nm, 1 mg/l, and 4 mg/l) significantly reduced light absorption at 645 and 663 nm and the content of chlorophyll b, chlorophyll a, and total chlorophyll, but Fe3O4 (25 nm, 2 mg/l) significantly reduced the chlorophyll a content. In addition, ZnO NPs (32 nm, 1 mg/l) significantly increased the chlorophyll b content. This study has made a major contribution to understanding the effect of low concentrations of NPs on plant seedlings. Currently, NPs with high concentrations, starting at 10 mg/l, have been analysed in other studies, but in the environment, NPs enter plants in low concentrations as dust or through water droplets. Therefore, it is important to determine the potential impact of small concentrations of NPs on crops that are important for agriculture.


Subject(s)
Nanoparticles , Zinc Oxide , Triticum/metabolism , Zinc Oxide/pharmacology , Chlorophyll A/metabolism , Photosynthesis , Chlorophyll/metabolism , Plants , Seedlings
2.
Molecules ; 26(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34771116

ABSTRACT

Sustainable agricultural practices are still essential due to soil degradation and crop losses. Recently, the relationship between plants and nanoparticles (NPs) attracted scientists' attention, especially for applications in agricultural production as nanonutrition. Therefore, the present research was carried out to investigate the effect of Fe3O4 NPs at low concentrations (0, 1, 10, and 20 mg/L) on three genotypes of barley (Hordeum vulgare L.) seedlings grown in hydroponic conditions. Significant increases in seedling growth, enhanced chlorophyll quality and quantity, and two miRNA expression levels were observed. Additionally, increased genotoxicity was observed in seedlings grown with NPs. Generally, Fe3O4 NPs at low concentrations could be successfully used as nanonutrition for increasing barley photosynthetic efficiency with consequently enhanced yield. These results are important for a better understanding of the potential impact of Fe3O4 NPs at low concentrations in agricultural crops and the potential of these NPs as nanonutrition for barley growth and yield enhancement. Future studies are needed to investigate the effect of these NPs on the expression of resistance-related genes and chlorophyll synthesis-related gene expression in treated barley seedlings.


Subject(s)
DNA Damage , Genotype , Hordeum/genetics , Magnetic Iron Oxide Nanoparticles/adverse effects , Stress, Physiological , Chlorophyll/metabolism , Comet Assay , DNA Damage/drug effects , DNA, Plant , Gene Expression Regulation, Plant/drug effects , Hordeum/metabolism , Magnetic Iron Oxide Nanoparticles/ultrastructure , Plant Development/drug effects , Seedlings/drug effects , Seedlings/growth & development
3.
ScientificWorldJournal ; 2021: 6644689, 2021.
Article in English | MEDLINE | ID: mdl-33628139

ABSTRACT

Metal nanoparticles (NPs) have an influence on plant growth and development. They can alter plant shoot and root length, fresh biomass production, and even influence the genome. Nanoparticles are also able to affect expression levels of plant microRNAs. MicroRNAs are able to protect plants from biotic stress, including pathogens which cause powdery mildew. In this study, Hordeum vulgare L. varieties "Marthe" and "KWS Olof" were grown in hydroponics with magnetic iron oxide (Fe3O4) and copper oxide (CuO) NPs added at 17, 35, and 70 mg/L. Plant morphology, genotoxicity, and expression of miR156a were investigated. The Fe3O4 and CuO NPs demonstrated different effects on the barley varieties, namely, Fe3O4 nanoparticles increased plant shoot and root lengths and fresh biomass, while CuO nanoparticles decreased them. CuO NPs presence caused larger changes on barley genome compared to Fe3O4 NPs. Thus, Fe3O4 NPs reduced genome stability to 72% in the "Marthe" variety and to 76.34% in the "KWS Olof" variety, while CuO NPs reduced genome stability to 53.33% in "Marthe" variety and in the "KWS Olof" variety to 68.81%. The miR156a expression levels after Fe3O4 NPs treatment did not change in the "Marthe" variety, but increased in the "KWS Olof" variety, while CuO NPs treatment increased miRNA expression levels in the "Marthe" variety but decrease them in the "KWS Olof" variety. As NPs are able to influence miRNA expression and miRNAs can affect the plant resistance, obtained results suggest that tested NPs may alter plant resistance response to pathogens.


Subject(s)
Cell Proliferation/drug effects , DNA Damage/drug effects , Hordeum/growth & development , Metal Nanoparticles/chemistry , Copper/chemistry , Copper/pharmacology , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Genotype , Hordeum/drug effects , Hordeum/genetics , MicroRNAs/antagonists & inhibitors , Mutagenicity Tests , Plant Roots/genetics , Plant Roots/growth & development
4.
ScientificWorldJournal ; 2020: 6649746, 2020.
Article in English | MEDLINE | ID: mdl-33343237

ABSTRACT

Zinc oxide nanoparticles are one of the most commonly engineered nanomaterials and necessarily enter the environment because of the large quantities produced and their widespread application. Understanding the impacts of nanoparticles on plant growth and development is crucial for the assessment of probable environmental risks to food safety and human health, because plants are a fundamental living component of the ecosystem and the most important source in the human food chain. The objective of this study was to examine the impact of different concentrations of zinc oxide nanoparticles on barley Hordeum vulgare L. seed germination, seedling morphology, root cell viability, stress level, genotoxicity, and expression of miRNAs. The results demonstrate that zinc oxide nanoparticles enhance barley seed germination, shoot/root elongation, and H2O2 stress level and decrease root cell viability and genomic template stability and up- and downregulated miRNAs in barley seedlings.


Subject(s)
Hordeum/drug effects , Hordeum/genetics , Metal Nanoparticles/chemistry , Seedlings/drug effects , Seedlings/genetics , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Biomass , DNA Damage/drug effects , Gene Expression Regulation, Plant/drug effects , Genomic Instability , Germination/drug effects , Germination/genetics , Humans , Metal Nanoparticles/ultrastructure , MicroRNAs/genetics , Phenotype , Plant Development/drug effects , Plant Development/genetics , Stress, Physiological
5.
Int J Genomics ; 2017: 1676874, 2017.
Article in English | MEDLINE | ID: mdl-28326314

ABSTRACT

Nanoparticles influence on genome is investigated worldwide. The appearance of somaclonal variation is a cause of great concern for any micropropagation system. Somaclonal variation describes the tissue-culture-induced phenotypic and genotypic variations. This paper shows the results of somaclonal variation in two resistance genes pectin methylesterase and Mlo-like protein in all tissue culture development stages, as donor plant, calluses, and regenerants of Linum usitatissimum induced by gold and silver nanoparticles. In this paper, it was essential to obtain DNA material from all tissue culture development stages from one donor plant to record changes in each nucleotide sequence. Gene region specific primers were developed for resistance genes such as Mlo and Pme3 to define the genetic variability in tissue culture of L. usitatissimum. In recent years, utilization of gold and silver nanoparticles in tissue culture is increased and the mechanisms of changes in genome induced by nanoparticles still remain unclear. Obtained data show the somaclonal variation increase in calluses obtained from one donor plant and grown on medium supplemented by gold nanoparticles (Mlo 14.68 ± 0.98; Pme3 2.07 ± 0.87) or silver nanoparticles (Mlo 12.01 ± 0.43; Pme3 10.04 ± 0.46) and decrease in regenerants. Morphological parameters of calluses showed a number of differences between each investigated culture group.

SELECTION OF CITATIONS
SEARCH DETAIL
...