Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 19227, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37932474

ABSTRACT

Bladder cancer is the 10th most commonly diagnosed cancer with the highest lifetime treatment costs. The human amniotic membrane (hAM) is the innermost foetal membrane that possesses a wide range of biological properties, including anti-inflammatory, antimicrobial and anticancer properties. Despite the growing number of studies, the mechanisms associated with the anticancer effects of human amniotic membrane (hAM) are poorly understood. Here, we reported that hAM preparations (homogenate and extract) inhibited the expression of the epithelial-mesenchymal transition markers N-cadherin and MMP-2 in bladder cancer urothelial cells in a dose-dependent manner, while increasing the secretion of TIMP-2. Moreover, hAM homogenate exerted its antimigratory effect by downregulating the expression of FAK and proteins involved in actin cytoskeleton reorganisation, such as cortactin and small RhoGTPases. In muscle-invasive cancer urothelial cells, hAM homogenate downregulated the PI3K/Akt/mTOR signalling pathway, the key cascade involved in promoting bladder cancer. By using normal, non-invasive papilloma and muscle-invasive cancer urothelial models, new perspectives on the anticancer effects of hAM have emerged. The results identify new sites for therapeutic intervention and are prompt encouragement for ongoing anticancer drug development studies.


Subject(s)
Proto-Oncogene Proteins c-akt , Urinary Bladder Neoplasms , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Amnion/metabolism , Cell Movement , TOR Serine-Threonine Kinases/metabolism , Urinary Bladder Neoplasms/metabolism , Muscles/metabolism , Cell Line, Tumor , Cell Proliferation , Epithelial-Mesenchymal Transition
2.
Front Bioeng Biotechnol ; 11: 1258753, 2023.
Article in English | MEDLINE | ID: mdl-38033821

ABSTRACT

Many preclinical studies have shown that birth-associated tissues, cells and their secreted factors, otherwise known as perinatal derivatives (PnD), possess various biological properties that make them suitable therapeutic candidates for the treatment of numerous pathological conditions. Nevertheless, in the field of PnD research, there is a lack of critical evaluation of the PnD standardization process: from preparation to in vitro testing, an issue that may ultimately delay clinical translation. In this paper, we present the PnD e-questionnaire developed to assess the current state of the art of methods used in the published literature for the procurement, isolation, culturing preservation and characterization of PnD in vitro. Furthermore, we also propose a consensus for the scientific community on the minimal criteria that should be reported to facilitate standardization, reproducibility and transparency of data in PnD research. Lastly, based on the data from the PnD e-questionnaire, we recommend to provide adequate information on the characterization of the PnD. The PnD e-questionnaire is now freely available to the scientific community in order to guide researchers on the minimal criteria that should be clearly reported in their manuscripts. This review is a collaborative effort from the COST SPRINT action (CA17116), which aims to guide future research to facilitate the translation of basic research findings on PnD into clinical practice.

3.
Front Bioeng Biotechnol ; 10: 965006, 2022.
Article in English | MEDLINE | ID: mdl-35992360

ABSTRACT

Perinatal derivatives (PnD) are birth-associated tissues, such as placenta, umbilical cord, amniotic and chorionic membrane, and thereof-derived cells as well as secretomes. PnD play an increasing therapeutic role with beneficial effects on the treatment of various diseases. The aim of this review is to elucidate the modes of action of non-hematopoietic PnD on inflammation, angiogenesis and wound healing. We describe the source and type of PnD with a special focus on their effects on inflammation and immune response, on vascular function as well as on cutaneous and oral wound healing, which is a complex process that comprises hemostasis, inflammation, proliferation (including epithelialization, angiogenesis), and remodeling. We further evaluate the different in vitro assays currently used for assessing selected functional and therapeutic PnD properties. This review is a joint effort from the COST SPRINT Action (CA17116) with the intention to promote PnD into the clinics. It is part of a quadrinomial series on functional assays for validation of PnD, spanning biological functions, such as immunomodulation, anti-microbial/anti-cancer activities, anti-inflammation, wound healing, angiogenesis, and regeneration.

4.
Front Bioeng Biotechnol ; 9: 742858, 2021.
Article in English | MEDLINE | ID: mdl-34631683

ABSTRACT

Knowledge of the beneficial effects of perinatal derivatives (PnD) in wound healing goes back to the early 1900s when the human fetal amniotic membrane served as a biological dressing to treat burns and skin ulcerations. Since the twenty-first century, isolated cells from perinatal tissues and their secretomes have gained increasing scientific interest, as they can be obtained non-invasively, have anti-inflammatory, anti-cancer, and anti-fibrotic characteristics, and are immunologically tolerated in vivo. Many studies that apply PnD in pre-clinical cutaneous wound healing models show large variations in the choice of the animal species (e.g., large animals, rodents), the choice of diabetic or non-diabetic animals, the type of injury (full-thickness wounds, burns, radiation-induced wounds, skin flaps), the source and type of PnD (placenta, umbilical cord, fetal membranes, cells, secretomes, tissue extracts), the method of administration (topical application, intradermal/subcutaneous injection, intravenous or intraperitoneal injection, subcutaneous implantation), and the type of delivery systems (e.g., hydrogels, synthetic or natural biomaterials as carriers for transplanted cells, extracts or secretomes). This review provides a comprehensive and integrative overview of the application of PnD in wound healing to assess its efficacy in preclinical animal models. We highlight the advantages and limitations of the most commonly used animal models and evaluate the impact of the type of PnD, the route of administration, and the dose of cells/secretome application in correlation with the wound healing outcome. This review is a collaborative effort from the COST SPRINT Action (CA17116), which broadly aims at approaching consensus for different aspects of PnD research, such as providing inputs for future standards for the preclinical application of PnD in wound healing.

5.
Int J Mol Sci ; 22(11)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070317

ABSTRACT

Urinary bladder cancer is often multifocal; however, the intraluminal dissemination of the urothelial cancer cells is poorly understood. The involvement of N-cadherin in the adhesion of the cancer urothelial cells to the urothelium had not previously been studied. Therefore, we herein explore the possibility of the intraluminal dissemination of the urothelial cancer cells by evaluating the role of classical cadherins in the adhesion of urothelial cancer cells to the urothelium. We used E-cadherin negative T24 cells and established a T24 Ncadlow cell line with an additionally decreased expression of N-cadherin in the plasma membrane and a decreased secretion of proform of metalloproteinase 2. The labelled T24 and T24 Ncadlow cells were seeded onto urothelial in vitro models. After 24 h in co-culture, unattached cancer cells were rinsed and urothelia with attached cancer urothelial cells were processed for fluorescence and electron microscopy. Both the T24 and T24 Ncadlow cells attached to the urothelium, yet only to the uroplakin-negative urothelial cells. The ultrastructural analysis showed that T24 and T24 Ncadlow cells adhere to poorly differentiated urothelial cells by desmosomes. To achieve this, they first disrupt tight junctions of superficial urothelial cells. This study indicates that the lack of E-cadherin expression and decreased expression of N-cadherin in the plasma membrane of T24 cells does not interfere with their adhesion to the urothelium; therefore, our results suggest that intraluminal dissemination of cancer urothelial cells along the urothelium occurs on uroplakin-negative cells and is desmosome-mediated.


Subject(s)
Neoplasm Proteins/metabolism , Urinary Bladder Neoplasms/metabolism , Urinary Bladder/immunology , Uroplakins/metabolism , Urothelium/metabolism , Cell Adhesion , Cell Line, Tumor , Coculture Techniques , Humans , Tight Junctions/metabolism , Tight Junctions/pathology , Urinary Bladder/pathology , Urinary Bladder Neoplasms/pathology , Urothelium/pathology
6.
Front Bioeng Biotechnol ; 8: 554530, 2020.
Article in English | MEDLINE | ID: mdl-33240862

ABSTRACT

Bladder cancer is one of the most common cancers among men in industrialized countries and on the global level incidence and mortality rates are increasing. In spite of progress in surgical treatment and chemotherapy, the prognosis remains poor for patients with muscle-invasive bladder cancer. Therefore, there is a great need for the development of novel therapeutic approaches. The human amniotic membrane (hAM) is a multi-layered membrane that comprises the innermost part of the placenta. It has unique properties that make it suitable for clinical use, such as the ability to promote wound healing and decrease scarring, low immunogenicity, and immunomodulatory, antimicrobial and anticancer properties. This study aimed to investigate the effect of (i) hAM-derived cells and (ii) hAM scaffolds on the growth dynamics, proliferation rate, and invasive potential of muscle-invasive bladder cancer T24 cells. Our results show that 24 and 48 h of co-culturing T24 cells with hAM-derived cells (at 1:1 and 1:4 ratios) diminished the proliferation rate of T24 cells. Furthermore, when seeded on hAM scaffolds, namely (1) epithelium of hAM (e-hAM), (2) basal lamina of hAM (denuded; d-hAM), and (3) stroma of hAM (s-hAM), the growth dynamic of T24 cells was altered and proliferation was reduced, even more so by the e-hAM scaffolds. Importantly, despite their muscle-invasive potential, the T24 cells did not disrupt the basal lamina of hAM scaffolds. Furthermore, we observed a decrease in the expression of epithelial-mesenchymal transition (EMT) markers N-cadherin, Snail and Slug in T24 cells grown on hAM scaffolds and individual T24 cells even expressed epithelial markers E-cadherin and occludin. Our study brings new knowledge on basic mechanisms of hAM affecting bladder carcinogenesis and the results serve as a good foundation for further research into the potential of hAM-derived cells and the hAM extracellular matrix to serve as a novel bladder cancer treatment.

7.
Cell Transplant ; 29: 963689720946668, 2020.
Article in English | MEDLINE | ID: mdl-32841052

ABSTRACT

Culturing cells in three-dimensional systems that include extracellular matrix components and different cell types mimic the native tissue and as such provide much more representative results than conventional two-dimensional cell cultures. In order to develop biomimetic bladder tissue in vitro, we used human amniotic membrane (AM) extracellular matrix as a scaffold for bladder fibroblasts (BFs) and urothelial cells. Our aims were to evaluate the integration of BFs into the AM stroma, to assess the differentiation of the urothelium on BFs-enriched AM scaffolds, and to evaluate the AM as a urothelial wound dressing. First, to achieve the optimal integration of BFs into AM stroma, different intact and de- epithelialized AM (dAM) scaffolds were tested. BFs secreted matrix metalloproteinase (MMP)-1 and MMP-2 and integrated into the stroma of all types of AM scaffolds. Second, to establish urothelial tissue equivalent, urothelial cells were seeded on dAM scaffolds enriched with BFs. The BFs in the stroma of the AM scaffolds promoted (1) the proliferation of urothelial cells, (2) the attachment of urothelial cells on AM basal lamina with hemidesmosomes, and (3) development of multilayered urothelium with expressed uroplakins and well-developed cell junctions. Third, we established an ex vivo model of the injured bladder to evaluate the dAM as a wound dressing for urothelial full-thickness injury. dAM acted as a promising wound dressing since it enabled rapid re-epithelization of urothelial injury and integrated into the bladder tissue. Herein, the developed urothelial tissue equivalents enable further mechanistic studies of bladder epithelial-mesenchymal interactions, and they could be applied as biomimetic models for preclinical testing of newly developed drugs. Moreover, we could hypothesize that AM may be suitable as a dressing of the wound that occurs during transurethral resection of bladder tumor, since it could diminish the possibility of tumor recurrence, by promoting the rapid re-epithelization of the urothelium.


Subject(s)
Fibroblasts/metabolism , Tissue Engineering/methods , Urinary Bladder/metabolism , Urothelium/metabolism , Cell Differentiation , Cells, Cultured , Humans
8.
Histochem Cell Biol ; 150(5): 567-574, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30094468

ABSTRACT

Organ explant cultures are well-established in vitro models that are used to study normal cell biological and regeneration processes as well as carcinogenesis. Primary urothelial cultures from bladder mucosa explants are highly differentiated and are thus broadly used as in vitro experimental equivalents of native urothelial tissue. Since experiments on differentiated urothelial cultures from bladder mucosa explants currently allow only a single use of explants, establishment of sufficient quantities of cultures requires large numbers of sacrificed animals. There is thus a great need for a cheaper approach with less ethical dilemmas. Herein, we demonstrate that mouse bladder mucosa explants can be reused. Reused explants produce outgrowths with highly differentiated urothelia, just like primary explants. Even after being recycled ten times, urothelial outgrowths have the supramolecular and ultrastructural features that are comparable to the native urothelium. Ten times reused explants produce superficial urothelial cells that express uroplakins in the apical plasma membrane, claudin-8 in the tight junctions, and have a subapical network of cytokeratin 20. Basal urothelial cells in urothelial outgrowths of ten times reused explants express p63 which indicates that these urothelial outgrowths have a persistent proliferative capacity. Using our approach, one can perform experiments that were previously not feasible due to low quantities of donor tissue. The method also offers opportunity for effective use of scarce healthy human urothelial tissue.


Subject(s)
Cell Differentiation , Mucous Membrane/cytology , Urinary Bladder/cytology , Urothelium/cytology , Animals , Cell Culture Techniques/methods , Cells, Cultured , Equipment Reuse , Fluorescent Antibody Technique , Male , Mice , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission
9.
Toxicol In Vitro ; 44: 403-413, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28807631

ABSTRACT

Bladder cancer is among the most common and aggressive human malignant carcinomas, thus targeting and removal of bladder cancer cells is still a challenge. Although it is well known that chitosan hydrochloride (CH-HCl) causes desquamation of normal urothelial cells, its effect on cancer urothelial cells has not been recognized yet. In this in vitro study, we analyzed the cytotoxicity of 0.05% CH-HCl on three urothelial models: two cancer urothelial models, i.e. invasive and papillary urothelial neoplasms, and a normal urothelial model. The cytotoxicity of CH-HCl was evaluated with viability tests, transepithelial resistance (TER) measurements, and electron microscopy. TER measurements showed that 15-minute treatment with CH-HCl caused no reduction in TER of the cancer models, whereas the TER of the normal urothelial model significantly decreased. Furthermore, after CH-HCl treatment, the viability of cancer cells was reduced by only 5%, whereas the viability of normal cells was reduced by 30%. Ultrastructural analysis revealed necrotic cell death in all cases. We have demonstrated that although CH-HCl increases the mortality of cancer urothelial cells, it increases the mortality of normal urothelial cells even more so. However, shorter 2-minute CH-HCl treatment only temporarily increases the permeability of normal urothelial model, i.e. disrupts tight junctions and reduces TER without comprising cell viability, and enables the complete recovery of the permeability barrier after 24h. Overall, our results suggest that CH-HCl cannot be used as a self-sufficient anticancer agent for urothelial bladder cancer treatment; nevertheless a possibility of its use as an enhancer of cytostatic treatment is discussed.


Subject(s)
Chitosan/pharmacology , Animals , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Humans , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Swine , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/ultrastructure , Urothelium/cytology , Urothelium/metabolism , Urothelium/ultrastructure
10.
Tissue Eng Part B Rev ; 21(6): 521-30, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26066408

ABSTRACT

Reciprocal interactions between the epithelium and mesenchyme are essential for the establishment of proper tissue morphology during organogenesis and tissue regeneration as well as for the maintenance of cell differentiation. With this review, we highlight the importance of epithelial-mesenchymal cross talk in healthy tissue and further discuss its significance in engineering functional tissues in vitro. We focus on the urinary bladder and small intestine, organs that are often compromised by disease and are as such in need of research that would advance effective treatment or tissue replacement. To date, the understanding of epithelial-mesenchymal reciprocal interactions has enabled the development of in vitro biomimetic tissue equivalents that have provided many possibilities in treating defective, damaged, or even cancerous tissues. Although research of the past several years has advanced the field of bladder and small intestine tissue engineering, one must be aware of its current limitations in successfully and above all safely introducing tissue-engineered constructs into clinical practice. Special attention is in particular needed when treating cancerous tissues, as initially successful tumor excision and tissue reconstruction may later on result in cancer recurrence due to oncogenic signals originating from an altered stroma. Recent rather poor outcomes in pioneering clinical trials of bladder reconstructions should serve as a reminder that recreating a functional organ to replace a dysfunctional one is an objective far more difficult to reach than initially foreseen. When considering effective tissue engineering approaches for diseased tissues in humans, it is imperative to introduce animal models with dysfunctional or, even more importantly, cancerous organs, which would greatly contribute to predicting possible complications and, hence, reducing risks when translating to the clinic.


Subject(s)
Epithelial-Mesenchymal Transition , Intestine, Small/metabolism , Tissue Engineering/methods , Urinary Bladder/metabolism , Animals , Humans
11.
Eur J Pharm Sci ; 69: 1-9, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25555374

ABSTRACT

In this study we have investigated the effects of different cell culture conditions on the Calu-3 epithelial cell model. Calu-3 cells were cultured in media A-MEM at the air-liquid (A-L) or liquid-liquid (L-L) interface for one or three wks (weeks). Different cryomethods were tested and the cell line was characterized using histochemistry, immunofluorescence, transmission and scanning electron microscopy, transepithelial resistance (TEER) measurements, permeability studies, and gene profiling of 84 drug transporters. Cell culture was successful in A-MEM with only 2.5% FBS. Cell proliferation and viability depended on the cryopreservation method. All Calu-3 models expressed CK7, occludin, and E-cadherin. The A-L interface resulted in a more biomimetic native bronchial epithelium displaying pseudostratified columnar epithelium with more microvilli and secretory vesicles than at the L-L interface, where the epithelium was cuboidal, but exhibited higher TEER values and lower dextran permeabilities. Longer time in culture significantly decreased dextran permeability and increased the expression of specific drug transporters. Drug transporter expression was also notably influenced by the culture interface, where the A-L interface yielded a higher expression of drug transporter genes than the L-L interface. Since cell culture interface and time in culture affect Calu-3 cell differentiation, barrier integrity, permeability properties, and drug transporter expression, culture conditions need to be considered and standardized when using the Calu-3 cell line as an in vitro model for aerosol drug delivery and screening of bronchial drug candidates.


Subject(s)
Bronchi/cytology , Cell Line/metabolism , Epithelial Cells/metabolism , Air , Cell Culture Techniques , Cell Line/ultrastructure , Cryopreservation , Dextrans/metabolism , Drug Evaluation, Preclinical , Epithelial Cells/ultrastructure , Fluorescein-5-isothiocyanate/metabolism , Fluorescent Dyes/metabolism , Humans , Membrane Transport Proteins/genetics , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Permeability , Transcriptome
12.
Pharm Res ; 32(2): 665-79, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25145337

ABSTRACT

PURPOSE: The further characterization of the cell line RPMI 2650 and the evaluation of different culture conditions for an in vitro model for nasal mucosa. METHODS: Cells were cultured in media MEM or A-MEM at air-liquid (A-L) or liquid-liquid (L-L) interfaces for 1 or 3 weeks. Different cryopreservation methods and cell culture techniques were evaluated with immunolabelling of junctional proteins, ultrastructural analysis using electron microscopy, transepithelial electrical resistance (TEER) measurements, permeation studies with dextran and jacalin, and gene expression profiling of 84 drug transporters. RESULTS: Cell proliferation and differentiation depended on the used medium. The established epithelia expressed occludin, claudin-1, and E-cadherin under all conditions. Cells grown at the A-L interface formed more layers and exhibited a higher TEER and lower dextran and jacalin permeability than at the L-L interface, where cells morphologically exhibited a more differentiated phenotype. The expression of ABC and SLC transporters depended on culture duration and interface. CONCLUSIONS: The RPMI 2650 cells form a polarized epithelium resembling nasal mucosa. However, different culture conditions have a significant effect on cell ultrastructure, barrier integrity, and gene expression, and should be considered when using this cell line as an in vitro model for drug permeability studies and screening of nasal drug candidates.


Subject(s)
Cell Culture Techniques/methods , Models, Biological , Nasal Mucosa/cytology , Nasal Mucosa/metabolism , Cell Line , Cell Proliferation/physiology , Cell Survival/physiology , Humans , Nasal Mucosa/ultrastructure
13.
Viruses ; 6(6): 2505-18, 2014 Jun 23.
Article in English | MEDLINE | ID: mdl-24960273

ABSTRACT

Contamination of cell cultures is the most common problem encountered in cell culture laboratories. Besides the secondary cell contaminations often occurring in the cell laboratories, the contaminations originating from donor animal or human tissue are equally as common, but usually harder to recognize and as such require special attention. The present study describes the detection of porcine adenovirus (PAdV), strain PAdV-SVN1 in cultures of normal porcine urothelial (NPU) cells isolated from urinary bladders of domestic pigs. NPU cell cultures were evaluated by light microscopy (LM), polymerase chain reaction (PCR), and additionally assessed by transmission electron microscopy (TEM). Characteristic ultrastructure of virions revealed the infection with adenovirus. The adenoviral contamination was further identified by the sequence analysis, which showed the highest similarity to recently described PAdV strain PAdV-WI. Additionally, the cell ultrastructural analysis confirmed the life-cycle characteristic for adenoviruses. To closely mimic the in vivo situation, the majority of research on in vitro models uses cell cultures isolated from human or animal tissue and their subsequent passages. Since the donor tissue could be a potential source of contamination, the microbiological screening of the excised tissue and harvested cell cultures is highly recommended.


Subject(s)
Adenoviruses, Porcine/isolation & purification , Adenoviruses, Porcine/classification , Adenoviruses, Porcine/genetics , Adenoviruses, Porcine/ultrastructure , Animals , Cell Culture Techniques , Cells, Cultured , Cytopathogenic Effect, Viral , DNA, Viral , Epithelial Cells/virology , Genes, Viral , Molecular Sequence Data , Phylogeny , Swine
14.
Tissue Eng Part C Methods ; 20(4): 317-27, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23947657

ABSTRACT

The amniotic membrane (AM) is a naturally derived biomaterial that possesses biological and mechanical properties of great importance for tissue engineering. The aim of our study was to determine whether the AM enables the formation of a normal urinary bladder epithelium-urothelium--and to reveal any differences in the urothelial cell (UC) growth and differentiation when using different AM scaffolds. Cryopreserved human AM was used as a scaffold in three different ways. Normal porcine UCs were seeded on the AM epithelium (eAM), denuded AM (dAM), and stromal AM (sAM) and were cultured for 3 weeks. UC growth on AM scaffolds was monitored daily. By using electron microscopy, histochemical and immunofluorescence techniques, we here provide evidence that all three AM scaffolds enable the development of the urothelium. The fastest growth and the highest differentiation of UCs were demonstrated on the sAM scaffold, which enables the development of tissue-engineered urothelium with molecular and ultrastructural properties comparable to that of the native urothelium. Most importantly, the highly differentiated urothelia on the sAM scaffolds provide important experimental models for future drug delivery studies and developing tissue engineering strategies considering that subtle differences are identified before translation to the clinical settings.


Subject(s)
Amnion/physiology , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Urothelium/cytology , Urothelium/ultrastructure , Animals , Biomarkers/metabolism , Cell Differentiation , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Cell Proliferation , Humans , Sus scrofa
SELECTION OF CITATIONS
SEARCH DETAIL
...