Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38257289

ABSTRACT

A series of novel triazole-tethered ferrocenoylamino-substituted cinchona-chalcone hybrids along with two representative benzoylamino-substituted reference compounds were prepared by three methods of CuAAC chemistry. In line with the limited success or complete failure of attempted conversions with low catalyst loadings, by means of DFT modeling studies, we demonstrated that a substantial part of the Cu(I) ions can be chelated and thus trapped in the aroylamino-substituted cinchona fragment and all of the accessible coordinating sites of the chalcone residues. Accordingly, increased amounts of catalysts were used to achieve acceptable yields; however, the cycloadditions with para-azidochalcones were accompanied by partial or complete aldehyde-forming hydrolytic fission of the enone C=C bond in a substituent-, solvent- and copper load-dependent manner. The experienced hydrolytic stability of the hybrids obtained by cycloadditions with ortho-azidochalcones was interpreted in terms of relative energetics, DFT reactivity indices and MO analysis of simplified models of two isomer copper-enone complexes. The novel hybrids were evaluated on HeLa, MDA-MB-231 and A2780 cell lines and showed substantial activity at low-to-submicromolar concentrations. An organometallic model carrying 3,4,5-trimethoxyphenyl residue in the enone part with a para-disubstituted benzene ring in the central skeletal region was identified as the most potent antiproliferative lead, characterized by submicromolar IC50 values measured on the three investigated cells. The biological assays also disclosed that this ferrocenoylamino-containing lead compound displays a ca. two- to five-fold more substantial antiproliferative effect than its benzoylamino-substituted counterpart.

2.
Molecules ; 27(19)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36235291

ABSTRACT

Utilizing McMurry reactions of 4,4'-dihydroxybenzophenone with appropriate carbonyl compounds, a series of 4-Hydroxytamoxifen analogues were synthesized. Their cytotoxic activity was evaluated in vitro on four human malignant cell lines (MCF-7, MDA-MB 231, A2058, HT-29). It was found that some of these novel Tamoxifen analogues show marked cytotoxicity in a dose-dependent manner. The relative ROS-generating capability of the synthetized analogues was evaluated by cyclic voltammetry (CV) and DFT modeling studies. The results of cell-viability assays, CV measurements and DFT calculations suggest that the cytotoxicity of the majority of the novel compounds is mainly elicited by their interactions with cellular targets including estrogen receptors rather than triggered by redox processes. However, three novel compounds could be involved in ROS-production and subsequent formation of quinone-methide preventing proliferation and disrupting the redox balance of the treated cells. Among the cell lines studied, HT-29 proved to be the most susceptible to the treatment with compounds having ROS-generating potency.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , Electrons , Female , Humans , Reactive Oxygen Species/pharmacology , Receptors, Estrogen/metabolism , Structure-Activity Relationship , Tamoxifen/analogs & derivatives , Tamoxifen/metabolism
3.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35337112

ABSTRACT

Tamoxifen is a long-known anti-tumor drug, which is the gold standard therapy in estrogen receptor (ER) positive breast cancer patients. According to previous studies, the conjugation of the original tamoxifen molecule with different functional groups can significantly improve its antitumor effect. The purpose of this research was to uncover the molecular mechanisms behind the cytotoxicity of different ferrocene-linked tamoxifen derivates. Tamoxifen and its ferrocene-linked derivatives, T5 and T15 were tested in PANC1, MCF7, and MDA-MB-231 cells, where the incorporation of the ferrocene group improved the cytotoxicity on all cell lines. PANC1, MCF7, and MDA-MB-231 express ERα and GPER1 (G-protein coupled ER 1). However, ERß is only expressed by MCF7 and MDA-MB-231 cells. Tamoxifen is a known agonist of GPER1, a receptor that can promote tumor progression. Analysis of the protein expression profile showed that while being cytotoxic, tamoxifen elevated the levels of different tumor growth-promoting factors (e.g., Bcl-XL, Survivin, EGFR, Cathepsins, chemokines). On the other hand, the ferrocene-linked derivates were able to lower these proteins. Further analysis showed that the ferrocene-linked derivatives significantly elevated the cellular oxidative stress compared to tamoxifen treatment. In conclusion, we were able to find two molecules possessing better cytotoxicity compared to their unmodified parent molecule while also being able to counter the negative effects of the presence of the GPER1 through the ER-independent mechanism of oxidative stress induction.

4.
Antioxidants (Basel) ; 9(6)2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32545536

ABSTRACT

Hybrid compounds combine fragments with complementary targets to achieve a common pharmacological goal. This approach represents an increasingly popular strategy for drug discovery. In this work, we aimed to design antitumor hybrid compounds based on an inhibitor of ataxia-telangiectasia and Rad3-related protein (ATR)-dependent signaling, protoapigenone, and a pro-oxidant ferrocene or chalcone fragment. Four new triazole-coupled hybrids were prepared. The compounds were cytotoxic against human breast cancer cell lines in vitro, showing IC50 values in the sub-micromolar range. The nature of interactions between relevant fragments of the hybrids was evaluated by the Chou-Talalay method. Experimental combination treatment with the fragments showed additive effects or slight/moderate synergism, while strong synergism was observed when the fragments were virtually combined into their hybrids, suggesting a relevant pharmacological benefit of the coupling. All hybrids were strong inhibitors of the ATR-mediated activation of Chk1, and they interfered with the redox balance of the cells leading to mitochondrial membrane depolarization. Additionally, they induced late apoptosis and primary necrosis in MDA-MB-231 and MCF-7 breast cancer cells, respectively. Our results demonstrate that coupling the ATR-dependent signaling inhibitor protoflavone with a pro-oxidant chalcone dramatically increases the antitumor activity compared with either fragment alone. Such compounds may offer an attractive novel strategy for the treatment of various cancers.

5.
Molecules ; 25(7)2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32244444

ABSTRACT

Use of a Pictet-Spengler reaction of tryptamine and l-tryptophan methyl ester and subsequent reduction of the nitro group followed by further cyclocondensation with aryl aldehydes and formyl-substituted carboxylic acids, including ferrocene-based components, furnished a series of diastereomeric 6-aryl-substituted 5,6,8,9,14,14b-hexahydroindolo[2',3':3,4]pyrido[1-c]-quinazolines and 5,5b,17,18-tetrahydroindolo[2',3':3,4]pyrido[1,2-c]isoindolo[2,1-a]quinazolin-11-(15bH)-ones with the elements of central-, planar and conformational chirality. The relative configuration and the conformations of the novel polycyclic indole derivatives were determined by 1H- and 13C-NMR methods supplemented by comparative DFT analysis of the possible diastereomers. The structure of one of the pentacyclic methyl esters with defined absolute configuration "S" was also confirmed by single crystal X-ray diffraction measurement. Accounting for the characteristic substituent-dependent diastereoselective formation of the products multistep mechanisms were proposed on the basis of the results of DFT modeling. Preliminary in vitro cytotoxic assays of the products revealed moderate-to-significant antiproliferative effects against PANC-1-, COLO-205-, A-2058 and EBC-1 cell lines that proved to be highly dependent on the stereostructure and on the substitution pattern of the pending aryl substituent.


Subject(s)
Carbolines/chemistry , Ferrous Compounds/chemistry , Metallocenes/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Carbolines/chemical synthesis , Carbolines/pharmacology , Cell Line, Tumor , Chemistry Techniques, Synthetic , Density Functional Theory , Ferrous Compounds/chemical synthesis , Ferrous Compounds/pharmacology , Humans , Metallocenes/chemical synthesis , Metallocenes/pharmacology , Models, Theoretical , Molecular Conformation , Molecular Structure , Spectrum Analysis , Structure-Activity Relationship
6.
Molecules ; 24(22)2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31718009

ABSTRACT

By means of copper(I)-and ruthenium(II)-catalyzed click reactions of quinine- and quinidine-derived alkynes with azide-substituted chalcones a systematic series of novel cinchona-chalcone hybrid compounds, containing 1,4-disubstituted- and 1,5-disubstituted 1,2,3-triazole linkers, were synthesized and evaluated for their cytotoxic activity on four human malignant cell lines (PANC-1, COLO-205, A2058 and EBC-1). In most cases, the cyclization reactions were accompanied by the transition-metal-catalyzed epimerization of the C9-stereogenic centre in the cinchona fragment. The results of the in vitro assays disclosed that all the prepared hybrids exhibit marked cytotoxicity in concentrations of low micromolar range, while the C9-epimerized model comprising quinidine- and (E)-1-(4-(3-oxo-3-(3,4,5-trimethoxyphenyl)prop-1-en-1-yl)phenyl) fragments, connected by 1,5-disubstituted 1,2,3-triazole linker, and can be regarded as the most potent lead of which activity is probably associated with a limited conformational space allowing for the adoption of a relatively rigid well-defined conformation identified by DFT modelling. The mechanism of action of this hybrid along with that of a model with markedly decreased activity were approached by comparative cell-cycle analyses in PANC-1 cells. These studies disclosed that the hybrid of enhanced antiproliferative activity exerts significantly more extensive inhibitory effects in subG1, S and G2/M phases than does the less cytotoxic counterpart.


Subject(s)
Chalcone/chemistry , Chalcone/pharmacology , Chemistry Techniques, Synthetic , Cinchona/chemistry , Triazoles/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Chalcone/chemical synthesis , Humans , Inhibitory Concentration 50 , Models, Molecular , Molecular Conformation , Molecular Structure , Structure-Activity Relationship
7.
Bioorg Med Chem Lett ; 26(3): 946-949, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26739780

ABSTRACT

Exploring copper(I)- and ruthenium(II)-catalyzed azide-alkyne cycloadditions and a Sonogashira protocol, novel cytostatic ferrocene-cinchona hybrids were synthetized displaying significant in vitro activity on HepG-2 and HT-29 cells. Preliminary SAR studies disclosed that compounds incorporating linkers with 1,2,3-triazole and chalchone residues can be considered as promising lead structures. According to the best of our knowledge this is the first letter on the incorporation of ferrocene nucleus in the reputed cinchona family via triazole and chalcone linkers with established pharmaceutical profile.


Subject(s)
Cinchona/chemistry , Cytostatic Agents/chemical synthesis , Ferrous Compounds/chemistry , Alkynes/chemistry , Azides/chemistry , Catalysis , Cell Proliferation/drug effects , Copper/chemistry , Cycloaddition Reaction , Cytostatic Agents/chemistry , Cytostatic Agents/pharmacology , HT29 Cells , Hep G2 Cells , Humans , Metallocenes , Ruthenium/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...