Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Otol Neurotol ; 35(7): 1223-7, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24691505

ABSTRACT

HYPOTHESIS: Changes to the angular position of the vibrating floating mass transducer (FMT) coupled to the long process of the incus will not affect stapes velocity. OBJECTIVE: The MED-EL Vibrant Soundbridge is an active middle ear implantable device, which constitutes an effective alternative to acoustic hearing aids for the rehabilitation of patients with sensorineural and mixed hearing loss. Because of varied anatomy, it is not always possible to position the FMT in line with the vibrating axis of the stapes. Changes in stapes velocity after angulation of the FMT are measured using laser Doppler vibrometry (LDV). METHODS: The study was performed on 7 human cadaveric temporal bones. The FMT was attached to the incus and angled at the recommended 0 degree or at 45 degrees relative to the vibrating axis of the stapes, and the stapes velocity measured using LDV. RESULTS: In comparison to the 0-degree position, angulating the FMT to 45 degrees reduced cochlea input as measured by stapes velocity, although there was no statistical significance to this difference. Placing the FMT at 45 degrees did not compromise the peak output of the device but resulted in a phase lag which was more marked compared with the 0-degree position. CONCLUSION: If it is not anatomically possible to position the FMT in line with the vibrating axis of the stapes, then placement at up to 45 degrees does not significantly alter the performance of the implant particularly in the midfrequencies that are crucial to the understanding of speech.


Subject(s)
Incus/surgery , Ossicular Prosthesis , Stapes/physiology , Temporal Bone/surgery , Transducers , Humans , Incus/physiology , Vibration
3.
Bioinspir Biomim ; 6(4): 040201, 2011 12.
Article in English | MEDLINE | ID: mdl-22128305

ABSTRACT

Movement in biology is an essential aspect of survival for many organisms, animals and plants. Implementing movement efficiently to meet specific needs is a key attribute of natural living systems, and can provide ideas for man-made developments. If we had to find a subtitle able to essentially convey the aim of this special section, it could read as follows: 'taking inspiration from nature for new materials, actuators, structures and controls for systems that move'. Our world is characterized by a huge variety of technical, engineering systems that move. They surround us in countless products that integrate actuators for different kinds of purposes. Basically, any kind of mechatronic system, such as those used for consumer products, machines, vehicles, industrial systems, robots, etc, is based on one or more devices that move, according to different implementations and motion ranges, often in response to external and internal stimuli. Despite this, technical solutions to develop systems that move do not evolve very quickly as they rely on traditional and well consolidated actuation technologies, which are implemented according to known architectures and with established materials. This fact limits our capability to overcome challenges related to the needs continuously raised by new fields of application, either at small or at large scales. Biomimetics-based approaches may provide innovative thinking and technologies in the field, taking inspiration from nature for smart and effective solutions. In an effort to disseminate current advances in this field, this special section collects some papers that cover different topics. A brief synopsis of the content of each contribution is presented below. The first paper, by Lienhard et al [1], deals with bioinspiration for the realization of structural parts in systems that passively move. It presents a bioinspired hingeless flapping mechanism, considered as a solution to the kinematics of deployable systems for architectural structures. The approach relies on structural elasticity to replace the need for local hinges. To this end, the authors have used fibre-reinforced polymers combining high tensile strength with low bending stiffness. The solution favours lower structural complexity as well as higher design versatility. Bioinspiration from the elastic kinetics of plants is a central pillar of the paper, which highlights the interrelation of form, actuation and kinematics in those natural systems. The second paper, by Nakata et al [2], deals with bioinspired systems that actively move, and, more specifically, fly. The paper is about the aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle conceived to fly in a Reynolds number regime used by most natural flyers, including insects, bats and birds. The paper presents a study of the flexible wing aerodynamics of the flapping vehicle by combining an in-house computational fluid dynamic model with wind tunnel experiments. In particular, the developed model is shown to be able to predict unsteady aerodynamics in terms of vortex and wake structures and their relationship with aerodynamic force generation. Simulations are validated by wind tunnel experiments, confirming the effectiveness of the adopted design solutions, as well as the importance of wing flexibility in designing small flapping-wing vehicles. The third paper, by Annunziata et al [3], deals with bioinspired control strategies for systems that move. In particular, the paper describes approaches to increase the stiffness variability in multi-muscle driven joints. Different strategies for simultaneous control of torque and stiffness in a hinge joint actuated by two antagonistic muscle pairs are presented. The proposed strategies combine torque and stiffness control by co-activation with approaches based on activation overflow and inverse modelling. Extensive simulations are performed and described to assess the control efficacy. In the fourth paper, Merker et al [4] present a study on stable walking with asymmetric legs. The authors are concerned with the need to clarify to what extent differences in the leg function of contralateral limbs can be tolerated during walking or running. A bipedal spring-mass model simulating walking with compliant legs is used to show that even remarkable differences between contralateral legs can not only be tolerated, but may also introduce advantages to the robustness of the system dynamics. This study might contribute to shedding light on the stability of asymmetric leg walking, including the potential benefits of asymmetry, with possible implications for design of prosthetic or orthotic systems. The last two papers of this special section deal with active bioinspired systems driven by new actuators made of smart materials. In particular, the paper authored by Rossi et al [5] presents an underwater fish-like robot based on bending structures driven by shape memory alloys. These kinds of actuators are used to bend the backbone of the fish, which in turn causes a change in the curvature of the fish body. The paper describes the mechanisms by which standard swimming patterns can be reproduced with the proposed design, and show characterizations in terms of the actuation speed and position accuracy of prototype systems. The last paper, by Carpi et al [6], presents an overview on ionic- and electronic-type electromechanically active polymer actuators as artificial muscles for bioinspired applications. The electrical responsiveness and numerous functional and structural properties that these materials and actuators have in common with natural muscles are shown to be the key motivation by which they are studied as artificial muscles for a huge variety of possible uses. The authors describe the fundamental aspects of relevant technologies and emphasize how after several years of basic research, electromechanically active polymer actuators are today facing their important initial transition from academia into commercialization. In conclusion, we hope that the selection of papers in this special section might help to provide readers with a balanced overview, through examples on the relevant fundamental aspects, materials, actuators, structures, controls and on their effective integration, in order to develop approaches which will be successful in 'taking inspiration from nature for systems that move'. References [1] Lienhard J, Schleicher S, Poppinga S, Masselter T, Milwich M, Speck T and Knippers J 2011 Flectofin: a hingeless flapping mechanism inspired by nature Bioinsp. Biomim. 6 045001 [2] Nakata T, Liu H, Tanaka Y, Nishihashi N, Wang X and Sato A 2011 Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle Bioinsp. Biomim. 6 045002 [3] Annunziata S, Paskarbeit J and Schneider A 2011 Novel bioinspired control approaches to increase the stiffness variability in multi-muscle driven joints Bioinsp. Biomim. 6 045003 [4] Merker A, Rummel J and Seyfarth A 2011 Stable walking with asymmetric legs Bioinsp. Biomim. 6 045004 [5] Rossi C, Colorado J, Coral W and Barrientos A 2011 Bending continuous structures with SMAs: a novel robotic fish design Bioinsp. Biomim. 6 045005 [6] Carpi F, Kornbluh R, Sommer-Larsen P and Alici G 2011 Electroactive polymer actuators as artificial muscles: are they ready for bioinspired applications? Bioinsp. Biomim. 6 045006.

4.
Plant J ; 56(4): 531-8, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18643995

ABSTRACT

The mechanism of active stress generation in tension wood is still not fully understood. To characterize the functional interdependency between the G-layer and the secondary cell wall, nanostructural characterization and mechanical tests were performed on native tension wood tissues of poplar (Populus nigra x Populus deltoids) and on tissues in which the G-layer was removed by an enzymatic treatment. In addition to the well-known axial orientation of the cellulose fibrils in the G-layer, it was shown that the microfibril angle of the S2-layer was very large (about 36 degrees). The removal of the G-layer resulted in an axial extension and a tangential contraction of the tissues. The tensile stress-strain curves of native tension wood slices showed a jagged appearance after yield that could not be seen in the enzyme-treated samples. The behaviour of the native tissue was modelled by assuming that cells deform elastically up to a critical strain at which the G-layer slips, causing a drop in stress. The results suggest that tensile stresses in poplar are generated in the living plant by a lateral swelling of the G-layer which forces the surrounding secondary cell wall to contract in the axial direction.


Subject(s)
Cell Wall/physiology , Microfibrils/physiology , Populus/physiology , Stress, Mechanical , Elasticity , Microscopy, Electron, Scanning , Scattering, Radiation , Tensile Strength
5.
Micron ; 39(2): 198-205, 2008.
Article in English | MEDLINE | ID: mdl-17395472

ABSTRACT

A fully automated procedure to extract and to image local fibre orientation in biological tissues from scanning X-ray diffraction is presented. The preferred chitin fibre orientation in the flow sensing system of crickets is determined with high spatial resolution by applying synchrotron radiation based X-ray microbeam diffraction in conjunction with advanced sample sectioning using a UV micro-laser. The data analysis is based on an automated detection of azimuthal diffraction maxima after 2D convolution filtering (smoothing) of the 2D diffraction patterns. Under the assumption of crystallographic fibre symmetry around the morphological fibre axis, the evaluation method allows mapping the three-dimensional orientation of the fibre axes in space. The resulting two-dimensional maps of the local fibre orientations - together with the complex shape of the flow sensing system - may be useful for a better understanding of the mechanical optimization of such tissues.


Subject(s)
Chitin/ultrastructure , Gryllidae/ultrastructure , Sensory Receptor Cells/ultrastructure , X-Ray Diffraction , Animals , Chitin/chemistry , Image Processing, Computer-Assisted/instrumentation , Image Processing, Computer-Assisted/methods , Microscopy, Electron, Scanning/instrumentation , Microscopy, Electron, Scanning/methods , Sense Organs/chemistry , Sense Organs/ultrastructure , Sensory Receptor Cells/chemistry , X-Ray Diffraction/instrumentation , X-Ray Diffraction/methods
6.
Laryngoscope ; 117(6): 1040-5, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17545867

ABSTRACT

BACKGROUND: Inadvertent drilling on the ossicular chain is one of the causes of sensorineural hearing loss (HL) that may follow tympanomastoid surgery. A high-frequency HL is most frequently observed. It is speculated that the HL is a result of vibration of the ossicular chain resembling acoustic noise trauma. It is generally considered that using a large cutting burr is more likely to cause damage than a small diamond burr. AIM: The aim was to investigate the equivalent noise level and its frequency characteristics generated by drilling onto the short process of the incus in fresh human temporal bones. METHODS AND MATERIALS: Five fresh cadaveric temporal bones were used. Stapes displacement was measured using laser Doppler vibrometry during short drilling episodes. Diamond and cutting burrs of different diameters were used. The effect of the drilling on stapes footplate displacement was compared with that generated by an acoustic signal. The equivalent noise level (dB sound pressure level equivalent [SPL eq]) was thus calculated. RESULTS: The equivalent noise levels generated ranged from 93 to 125 dB SPL eq. For a 1-mm cutting burr, the highest equivalent noise level was 108 dB SPL eq, whereas a 2.3-mm cutting burr produced a maximal level of 125 dB SPL eq. Diamond burrs generated less noise than their cutting counterparts, with a 2.3-mm diamond burr producing a highest equivalent noise level of 102 dB SPL eq. The energy of the noise increased at the higher end of the frequency spectrum, with a 2.3-mm cutting burr producing a noise level of 105 dB SPL eq at 1 kHz and 125 dB SPL eq at 8 kHz. In contrast, the same sized diamond burr produced 96 dB SPL eq at 1 kHz and 99 dB at 8 kHz. CONCLUSION: This study suggests that drilling on the ossicular chain can produce vibratory force that is analogous with noise levels known to produce acoustic trauma. For the same type of burr, the larger the diameter, the greater the vibratory force, and for the same size of burr, the cutting burr creates more vibratory force than the diamond burr. The cutting burr produces greater high-frequency than lower-frequency vibratory energy.


Subject(s)
Ear Ossicles/surgery , Laser Therapy/instrumentation , Noise , Otolaryngology/instrumentation , Rotation/adverse effects , Surgical Instruments/adverse effects , Temporal Bone/surgery , Ultrasonics , Vibration , Hearing Loss, Noise-Induced/etiology , Hearing Loss, Sensorineural/etiology , Humans
7.
Plant J ; 38(1): 27-37, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15053757

ABSTRACT

Xyloglucan-acting enzymes are believed to have effects on type I primary plant cell wall mechanical properties. In order to get a better understanding of these effects, a range of enzymes with different in vitro modes of action were tested against cell wall analogues (bio-composite materials based on Acetobacter xylinus cellulose and xyloglucan). Tomato pericarp xyloglucan endo transglycosylase (tXET) and nasturtium seed xyloglucanase (nXGase) were produced heterologously in Pichia pastoris. Their action against the cell wall analogues was compared with that of a commercial preparation of Trichoderma endo-glucanase (EndoGase). Both 'hydrolytic' enzymes (nXGase and EndoGase) were able to depolymerise not only the cross-link xyloglucan fraction but also the surface-bound fraction. Consequent major changes in cellulose fibril architecture were observed. In mechanical terms, removal of xyloglucan cross-links from composites resulted in increased stiffness (at high strain) and decreased visco-elasticity with similar extensibility. On the other hand, true transglycosylase activity (tXET) did not affect the cellulose/xyloglucan ratio. No change in composite stiffness or extensibility resulted, but a significant increase in creep behaviour was observed in the presence of active tXET. These results provide direct in vitro evidence for the involvement of cell wall xyloglucan-specific enzymes in mechanical changes underlying plant cell wall re-modelling and growth processes. Mechanical consequences of tXET action are shown to be complimentary to those of cucumber expansin.


Subject(s)
Cellulose/metabolism , Glucans/metabolism , Glycoside Hydrolases/metabolism , Glycosyltransferases/metabolism , Solanum lycopersicum/enzymology , Tropaeolum/enzymology , Xylans/metabolism , Base Sequence , Biomechanical Phenomena , Cell Wall/enzymology , Cellulose/chemistry , Cellulose/ultrastructure , Cross-Linking Reagents , DNA, Plant/genetics , Elasticity , Glucans/chemistry , Glucans/ultrastructure , Glycoside Hydrolases/genetics , Glycosyltransferases/genetics , Hydrolysis , Solanum lycopersicum/genetics , Microscopy, Electron , Pichia/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Tropaeolum/genetics , Viscosity , Xylans/chemistry , Xylans/ultrastructure
8.
Planta ; 215(6): 989-96, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12355159

ABSTRACT

Mechanical effects of turgor pressure on cell walls were simulated by deforming cell wall analogues based on Acetobacter xylinus cellulose under equi-biaxial tension. This experimental set-up, with associated modelling, allowed quantitative information to be obtained on cellulose alone and in composites with pectin and/or xyloglucan. Cellulose was the main load-bearing component, pectin and xyloglucan leading to a decrease in modulus when incorporated. The cellulose-only system could be regarded as an essentially linear elastic material with a modulus ranging from 200 to 500 MPa. Pectin incorporation modified extensibility properties of the system by topology/architecture changes of cellulose fibril assemblies, but the cellulose/pectin composites could still be described as a linear elastic material with a modulus ranging from 120 to 250 MPa. The xyloglucan/cellulose composite could not be modelled as a linear elastic material. Introducing xyloglucan into a cellulose network or a cellulose/pectin composite led to very compliant materials characterised by time-dependent creep behaviour. Modulus values obtained for the composite materials were compared with mechanical data found for plant-derived systems. After comparing bi-axial and uni-axial behaviour of the different composites, structural models were proposed to explain the role of each polysaccharide in determining the mechanical properties of these plant primary cell wall analogues.


Subject(s)
Cell Wall/chemistry , Cellulose/metabolism , Glucans , Microfibrils/metabolism , Plants/chemistry , Xylans , Acetobacter/chemistry , Acetobacter/physiology , Acetobacter/ultrastructure , Biomechanical Phenomena , Cell Wall/physiology , Cell Wall/ultrastructure , Cellulose/ultrastructure , Elasticity , Microfibrils/ultrastructure , Microscopy, Electron , Models, Biological , Osmotic Pressure , Pectins/metabolism , Plants/ultrastructure , Polysaccharides/metabolism , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...