Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Front Bioinform ; 4: 1352594, 2024.
Article in English | MEDLINE | ID: mdl-38601476

ABSTRACT

A major challenge in sequencing-based spatial transcriptomics (ST) is resolution limitations. Tissue sections are divided into hundreds of thousands of spots, where each spot invariably contains a mixture of cell types. Methods have been developed to deconvolute the mixed transcriptional signal into its constituents. Although ST is becoming essential for drug discovery, especially in cardiometabolic diseases, to date, no deconvolution benchmark has been performed on these types of tissues and diseases. However, the three methods, Cell2location, RCTD, and spatialDWLS, have previously been shown to perform well in brain tissue and simulated data. Here, we compare these methods to assess the best performance when using human data from cardiovascular disease (CVD) and chronic kidney disease (CKD) from patients in different pathological states, evaluated using expert annotation. In this study, we found that all three methods performed comparably well in deconvoluting verifiable cell types, including smooth muscle cells and macrophages in vascular samples and podocytes in kidney samples. RCTD shows the best performance accuracy scores in CVD samples, while Cell2location, on average, achieved the highest performance across all test experiments. Although all three methods had similar accuracies, Cell2location needed less reference data to converge at the expense of higher computational intensity. Finally, we also report that RCTD has the fastest computational time and the simplest workflow, requiring fewer computational dependencies. In conclusion, we find that each method has particular advantages, and the optimal choice depends on the use case.

2.
Sci Rep ; 13(1): 16147, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37752190

ABSTRACT

Pairing of the T cell receptor (TCR) with its cognate peptide-MHC (pMHC) is a cornerstone in T cell-mediated immunity. Recently, single-cell sequencing coupled with DNA-barcoded MHC multimer staining has enabled high-throughput studies of T cell specificities. However, the immense variability of TCR-pMHC interactions combined with the relatively low signal-to-noise ratio in the data generated using current technologies are complicating these studies. Several approaches have been proposed for denoising single-cell TCR-pMHC specificity data. Here, we present a benchmark evaluating two such denoising methods, ICON and ITRAP. We applied and evaluated the methods on publicly available immune profiling data provided by 10x Genomics. We find that both methods identified approximately 75% of the raw data as noise. We analyzed both internal metrics developed for the purpose and performance on independent data using machine learning methods trained on the raw and denoised 10x data. We find an increased signal-to-noise ratio comparing the denoised to the raw data for both methods, and demonstrate an overall superior performance of the ITRAP method in terms of both data consistency and performance. In conclusion, this study demonstrates that Improving the data quality from high throughput studies of TCRpMHC-specificity by denoising is paramount in increasing our understanding of T cell-mediated immunity.


Subject(s)
Benchmarking , Data Accuracy , Genomics , Immunity, Cellular , Machine Learning
3.
Elife ; 122023 05 03.
Article in English | MEDLINE | ID: mdl-37133356

ABSTRACT

Novel single-cell-based technologies hold the promise of matching T cell receptor (TCR) sequences with their cognate peptide-MHC recognition motif in a high-throughput manner. Parallel capture of TCR transcripts and peptide-MHC is enabled through the use of reagents labeled with DNA barcodes. However, analysis and annotation of such single-cell sequencing (SCseq) data are challenged by dropout, random noise, and other technical artifacts that must be carefully handled in the downstream processing steps. We here propose a rational, data-driven method termed ITRAP (improved T cell Receptor Antigen Paring) to deal with these challenges, filtering away likely artifacts, and enable the generation of large sets of TCR-pMHC sequence data with a high degree of specificity and sensitivity, thus outputting the most likely pMHC target per T cell. We have validated this approach across 10 different virus-specific T cell responses in 16 healthy donors. Across these samples, we have identified up to 1494 high-confident TCR-pMHC pairs derived from 4135 single cells.


Subject(s)
Receptors, Antigen, T-Cell , T-Lymphocytes , Receptors, Antigen, T-Cell/genetics , Antigens , Peptides
4.
Nat Microbiol ; 8(5): 986-998, 2023 05.
Article in English | MEDLINE | ID: mdl-37037943

ABSTRACT

The gut microbiome is shaped through infancy and impacts the maturation of the immune system, thus protecting against chronic disease later in life. Phages, or viruses that infect bacteria, modulate bacterial growth by lysis and lysogeny, with the latter being especially prominent in the infant gut. Viral metagenomes (viromes) are difficult to analyse because they span uncharted viral diversity, lacking marker genes and standardized detection methods. Here we systematically resolved the viral diversity in faecal viromes from 647 1-year-olds belonging to Copenhagen Prospective Studies on Asthma in Childhood 2010, an unselected Danish cohort of healthy mother-child pairs. By assembly and curation we uncovered 10,000 viral species from 248 virus family-level clades (VFCs). Most (232 VFCs) were previously unknown, belonging to the Caudoviricetes viral class. Hosts were determined for 79% of phage using clustered regularly interspaced short palindromic repeat spacers within bacterial metagenomes from the same children. Typical Bacteroides-infecting crAssphages were outnumbered by undescribed phage families infecting Clostridiales and Bifidobacterium. Phage lifestyles were conserved at the viral family level, with 33 virulent and 118 temperate phage families. Virulent phages were more abundant, while temperate ones were more prevalent and diverse. Together, the viral families found in this study expand existing phage taxonomy and provide a resource aiding future infant gut virome research.


Subject(s)
Bacteriophages , Gastrointestinal Microbiome , Infant , Humans , Prospective Studies , Bacteriophages/genetics , Lysogeny , Feces/microbiology , Gastrointestinal Microbiome/genetics , Bacteria/genetics
5.
Front Immunol ; 13: 1055151, 2022.
Article in English | MEDLINE | ID: mdl-36561755

ABSTRACT

T cell receptors (TCR) define the specificity of T cells and are responsible for their interaction with peptide antigen targets presented in complex with major histocompatibility complex (MHC) molecules. Understanding the rules underlying this interaction hence forms the foundation for our understanding of basic adaptive immunology. Over the last decade, efforts have been dedicated to developing assays for high throughput identification of peptide-specific TCRs. Based on such data, several computational methods have been proposed for predicting the TCR-pMHC interaction. The general conclusion from these studies is that the prediction of TCR interactions with MHC-peptide complexes remains highly challenging. Several reasons form the basis for this including scarcity and quality of data, and ill-defined modeling objectives imposed by the high redundancy of the available data. In this work, we propose a framework for dealing with this redundancy, allowing us to address essential questions related to the modeling of TCR specificity including the use of peptide- versus pan-specific models, how to best define negative data, and the performance impact of integrating of CDR1 and 2 loops. Further, we illustrate how and why it is strongly recommended to include simple similarity-based modeling approaches when validating an improved predictive power of machine learning models, and that such validation should include a performance evaluation as a function of "distance" to the training data, to quantify the potential for generalization of the proposed model. The conclusion of the work is that, given current data, TCR specificity is best modeled using peptide-specific approaches, integrating information from all 6 CDR loops, and with negative data constructed from a combination of true and mislabeled negatives. Comparing such machine learning models to similarity-based approaches demonstrated an increased performance gain of the former as the "distance" to the training data was increased; thus demonstrating an improved generalization ability of the machine learning-based approaches. We believe these results demonstrate that the outlined modeling framework and proposed evaluation strategy form a solid basis for investigating the modeling of TCR specificities and that adhering to such a framework will allow for faster progress within the field. The final devolved model, NetTCR-2.1, is available at https://services.healthtech.dtu.dk/service.php?NetTCR-2.1.


Subject(s)
Peptides , Receptors, Antigen, T-Cell , Protein Binding , T-Lymphocytes , Major Histocompatibility Complex , Histocompatibility Antigens/chemistry
6.
Sci Rep ; 11(1): 20735, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34671071

ABSTRACT

Type 1 diabetes is a chronic autoimmune disease requiring insulin treatment for survival. Prolonged duration of type 1 diabetes is associated with increased risk of microvascular complications. Although chronic hyperglycemia and diabetes duration have been considered as the major risk factors for vascular complications, this is not universally seen among all patients. Persons with long-term type 1 diabetes who have remained largely free from vascular complications constitute an ideal group for investigation of natural defense mechanisms against prolonged exposure of diabetes. Transcriptomic signatures obtained from RNA sequencing of the peripheral blood cells were analyzed in non-progressors with more than 30 years of diabetes duration and compared to the patients who progressed to microvascular complications within a shorter duration of diabetes. Analyses revealed that non-progressors demonstrated a reduction in expression of the oxidative phosphorylation (OXPHOS) genes, which were positively correlated with the expression of DNA repair enzymes, namely genes involved in base excision repair (BER) machinery. Reduced expression of OXPHOS and BER genes was linked to decrease in expression of inflammation-related genes, higher glucose disposal rate and reduced measures of hepatic fatty liver. Results from the present study indicate that at transcriptomic level reduction in OXPHOS, DNA repair and inflammation-related genes is linked to better insulin sensitivity and protection against microvascular complications in persons with long-term type 1 diabetes.


Subject(s)
DNA Damage/genetics , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/pathology , Microvessels/pathology , Adult , Blood Glucose/genetics , Fatty Liver/genetics , Fatty Liver/pathology , Female , Humans , Hyperglycemia/genetics , Hyperglycemia/pathology , Insulin Resistance/genetics , Liver/pathology , Male , Middle Aged , Oxidative Phosphorylation
7.
Commun Biol ; 4(1): 1060, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34508155

ABSTRACT

Prediction of T-cell receptor (TCR) interactions with MHC-peptide complexes remains highly challenging. This challenge is primarily due to three dominant factors: data accuracy, data scarceness, and problem complexity. Here, we showcase that "shallow" convolutional neural network (CNN) architectures are adequate to deal with the problem complexity imposed by the length variations of TCRs. We demonstrate that current public bulk CDR3ß-pMHC binding data overall is of low quality and that the development of accurate prediction models is contingent on paired α/ß TCR sequence data corresponding to at least 150 distinct pairs for each investigated pMHC. In comparison, models trained on CDR3α or CDR3ß data alone demonstrated a variable and pMHC specific relative performance drop. Together these findings support that T-cell specificity is predictable given the availability of accurate and sufficient paired TCR sequence data. NetTCR-2.0 is publicly available at https://services.healthtech.dtu.dk/service.php?NetTCR-2.0 .


Subject(s)
Neural Networks, Computer , Receptors, Antigen, T-Cell/chemistry , Protein Binding
8.
Front Immunol ; 12: 640725, 2021.
Article in English | MEDLINE | ID: mdl-33777034

ABSTRACT

The adaptive immune system in vertebrates has evolved to recognize non-self antigens, such as proteins expressed by infectious agents and mutated cancer cells. T cells play an important role in antigen recognition by expressing a diverse repertoire of antigen-specific receptors, which bind epitopes to mount targeted immune responses. Recent advances in high-throughput sequencing have enabled the routine generation of T-cell receptor (TCR) repertoire data. Identifying the specific epitopes targeted by different TCRs in these data would be valuable. To accomplish that, we took advantage of the ever-increasing number of TCRs with known epitope specificity curated in the Immune Epitope Database (IEDB) since 2004. We compared seven metrics of sequence similarity to determine their power to predict if two TCRs have the same epitope specificity. We found that a comprehensive k-mer matching approach produced the best results, which we have implemented into TCRMatch, an openly accessible tool (http://tools.iedb.org/tcrmatch/) that takes TCR ß-chain CDR3 sequences as an input, identifies TCRs with a match in the IEDB, and reports the specificity of each match. We anticipate that this tool will provide new insights into T cell responses captured in receptor repertoire and single cell sequencing experiments and will facilitate the development of new strategies for monitoring and treatment of infectious, allergic, and autoimmune diseases, as well as cancer.


Subject(s)
Algorithms , Datasets as Topic , Epitopes, T-Lymphocyte , Receptors, Antigen, T-Cell , T-Cell Antigen Receptor Specificity , Humans , Internet
9.
Front Immunol ; 11: 1304, 2020.
Article in English | MEDLINE | ID: mdl-32655572

ABSTRACT

Recombinant DNA technology has, in the last decades, contributed to a vast expansion of the use of protein drugs as pharmaceutical agents. However, such biological drugs can lead to the formation of anti-drug antibodies (ADAs) that may result in adverse effects, including allergic reactions and compromised therapeutic efficacy. Production of ADAs is most often associated with activation of CD4 T cell responses resulting from proteolysis of the biotherapeutic and loading of drug-specific peptides into major histocompatibility complex (MHC) class II on professional antigen-presenting cells. Recently, readouts from MHC-associated peptide proteomics (MAPPs) assays have been shown to correlate with the presence of CD4 T cell epitopes. However, the limited sensitivity of MAPPs challenges its use as an immunogenicity biomarker. In this work, MAPPs data was used to construct an artificial neural network (ANN) model for MHC class II antigen presentation. Using Infliximab and Rituximab as showcase stories, the model demonstrated an unprecedented performance for predicting MAPPs and CD4 T cell epitopes in the context of protein-drug immunogenicity, complementing results from MAPPs assays and outperforming conventional prediction models trained on binding affinity data.


Subject(s)
Antirheumatic Agents/pharmacology , Histocompatibility Antigens Class II/immunology , Infliximab/pharmacology , Neural Networks, Computer , Rituximab/pharmacology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Epitopes, T-Lymphocyte/drug effects , Epitopes, T-Lymphocyte/immunology , Humans , Mass Spectrometry , Peptides/immunology , Protein Binding , Proteomics
10.
Sci Rep ; 10(1): 11561, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32665614

ABSTRACT

Identification of biomarkers associated with protection from developing diabetic complications is a prerequisite for an effective prevention and treatment. The aim of the present study was to identify clinical and plasma metabolite markers associated with freedom from vascular complications in people with very long duration of type 1 diabetes (T1D). Individuals with T1D, who despite having longer than 30 years of diabetes duration never developed major macro- or microvascular complications (non-progressors; NP) were compared with those who developed vascular complications within 25 years from diabetes onset (rapid progressors; RP) in the Scandinavian PROLONG (n = 385) and DIALONG (n = 71) cohorts. The DIALONG study also included 75 healthy controls. Plasma metabolites were measured using gas and/or liquid chromatography coupled to mass spectrometry. Lower hepatic fatty liver indices were significant common feature characterized NPs in both studies. Higher insulin sensitivity and residual ß-cell function (C-peptide) were also associated with NPs in PROLONG. Protection from diabetic complications was associated with lower levels of the glycolytic metabolite pyruvate and APOCIII in PROLONG, and with lower levels of thiamine monophosphate and erythritol, a cofactor and intermediate product in the pentose phosphate pathway as well as higher phenylalanine, glycine and serine in DIALONG. Furthermore, T1D individuals showed elevated levels of picolinic acid as compared to the healthy individuals. The present findings suggest a potential beneficial shunting of glycolytic substrates towards the pentose phosphate and one carbon metabolism pathways to promote nucleotide biosynthesis in the liver. These processes might be linked to higher insulin sensitivity and lower liver fat content, and might represent a mechanism for protection from vascular complications in individuals with long-term T1D.


Subject(s)
C-Peptide/blood , Diabetes Complications/genetics , Diabetes Mellitus, Type 1/genetics , Nucleotides/blood , Aged , Biomarkers/blood , Blood Glucose , Diabetes Complications/blood , Diabetes Complications/pathology , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/pathology , Female , Genetic Predisposition to Disease , Humans , Insulin Resistance/genetics , Liver/metabolism , Male , Metabolomics , Middle Aged , Nucleotides/biosynthesis
11.
Sci Rep ; 9(1): 14530, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31601838

ABSTRACT

The interaction between the class I major histocompatibility complex (MHC), the peptide presented by the MHC and the T-cell receptor (TCR) is a key determinant of the cellular immune response. Here, we present TCRpMHCmodels, a method for accurate structural modelling of the TCR-peptide-MHC (TCR-pMHC) complex. This TCR-pMHC modelling pipeline takes as input the amino acid sequence and generates models of the TCR-pMHC complex, with a median Cα RMSD of 2.31 Å. TCRpMHCmodels significantly outperforms TCRFlexDock, a specialised method for docking pMHC and TCR structures. TCRpMHCmodels is simple to use and the modelling pipeline takes, on average, only two minutes. Thanks to its ease of use and high modelling accuracy, we expect TCRpMHCmodels to provide insights into the underlying mechanisms of TCR and pMHC interactions and aid in the development of advanced T-cell-based immunotherapies and rational design of vaccines. The TCRpMHCmodels tool is available at http://www.cbs.dtu.dk/services/TCRpMHCmodels/ .


Subject(s)
Histocompatibility Antigens Class I/chemistry , Models, Molecular , Receptors, Antigen, T-Cell/chemistry , Antigens/chemistry , Computational Biology , Databases, Protein , Epitopes/chemistry , Humans , Immune System , Peptides/chemistry , T-Lymphocytes/immunology
12.
Viruses ; 11(7)2019 07 20.
Article in English | MEDLINE | ID: mdl-31330855

ABSTRACT

The human gut microbiome (GM) plays an important role in human health and diseases. However, while substantial progress has been made in understanding the role of bacterial inhabitants of the gut, much less is known regarding the viral component of the GM. Bacteriophages (phages) are viruses attacking specific host bacteria and likely play important roles in shaping the GM. Although metagenomic approaches have led to the discoveries of many new viruses, they remain largely uncultured as their hosts have not been identified, which hampers our understanding of their biological roles. Existing protocols for isolation of viromes generally require relatively high input volumes and are generally more focused on extracting nucleic acids of good quality and purity for down-stream analysis, and less on purifying viruses with infective capacity. In this study, we report the development of an efficient protocol requiring low sample input yielding purified viromes containing phages that are still infective, which also are of sufficient purity for genome sequencing. We validated the method through spiking known phages followed by plaque assays, qPCR, and metagenomic sequencing. The protocol should facilitate the process of culturing novel viruses from the gut as well as large scale studies on gut viromes.


Subject(s)
Feces/virology , Gastrointestinal Microbiome , Metagenome , Metagenomics , Bacteriophages/classification , Bacteriophages/genetics , Computational Biology/methods , Humans , Infant , Metagenomics/methods
13.
Nat Biotechnol ; 2018 Nov 19.
Article in English | MEDLINE | ID: mdl-30451992

ABSTRACT

The promiscuous nature of T-cell receptors (TCRs) allows T cells to recognize a large variety of pathogens, but makes it challenging to understand and control T-cell recognition. Existing technologies provide limited information about the key requirements for T-cell recognition and the ability of TCRs to cross-recognize structurally related elements. Here we present a 'one-pot' strategy for determining the interactions that govern TCR recognition of peptide-major histocompatibility complex (pMHC). We measured the relative affinities of TCRs to libraries of barcoded peptide-MHC variants and applied this knowledge to understand the recognition motif, here termed the TCR fingerprint. The TCR fingerprints of 16 different TCRs were identified and used to predict and validate cross-recognized peptides from the human proteome. The identified fingerprints differed among TCRs recognizing the same epitope, demonstrating the value of this strategy for understanding T-cell interactions and assessing potential cross-recognition before selection of TCRs for clinical development.

15.
Nat Genet ; 50(8): 1072-1080, 2018 08.
Article in English | MEDLINE | ID: mdl-30013184

ABSTRACT

Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis.


Subject(s)
Genetic Loci/genetics , Genetic Predisposition to Disease/genetics , Genome, Human/genetics , HLA Antigens/genetics , Rhinitis, Allergic/genetics , Allergens/genetics , Case-Control Studies , Genetic Variation/genetics , Genome-Wide Association Study/methods , Humans , Phenotype , Risk
16.
Hum Mol Genet ; 27(17): 3113-3127, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29931343

ABSTRACT

Prior studies suggest dental caries traits in children and adolescents are partially heritable, but there has been no large-scale consortium genome-wide association study (GWAS) to date. We therefore performed GWAS for caries in participants aged 2.5-18.0 years from nine contributing centres. Phenotype definitions were created for the presence or absence of treated or untreated caries, stratified by primary and permanent dentition. All studies tested for association between caries and genotype dosage and the results were combined using fixed-effects meta-analysis. Analysis included up to 19 003 individuals (7530 affected) for primary teeth and 13 353 individuals (5875 affected) for permanent teeth. Evidence for association with caries status was observed at rs1594318-C for primary teeth [intronic within ALLC, odds ratio (OR) 0.85, effect allele frequency (EAF) 0.60, P 4.13e-8] and rs7738851-A (intronic within NEDD9, OR 1.28, EAF 0.85, P 1.63e-8) for permanent teeth. Consortium-wide estimated heritability of caries was low [h2 of 1% (95% CI: 0%: 7%) and 6% (95% CI 0%: 13%) for primary and permanent dentitions, respectively] compared with corresponding within-study estimates [h2 of 28% (95% CI: 9%: 48%) and 17% (95% CI: 2%: 31%)] or previously published estimates. This study was designed to identify common genetic variants with modest effects which are consistent across different populations. We found few single variants associated with caries status under these assumptions. Phenotypic heterogeneity between cohorts and limited statistical power will have contributed; these findings could also reflect complexity not captured by our study design, such as genetic effects which are conditional on environmental exposure.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Biomarkers/analysis , Dental Caries/genetics , Dentition, Permanent , Genome-Wide Association Study/methods , Phosphoproteins/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Adolescent , Case-Control Studies , Child , Child, Preschool , Female , Humans , Male , Phenotype
17.
Am J Hum Genet ; 102(1): 88-102, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29304378

ABSTRACT

Bone mineral density (BMD) assessed by DXA is used to evaluate bone health. In children, total body (TB) measurements are commonly used; in older individuals, BMD at the lumbar spine (LS) and femoral neck (FN) is used to diagnose osteoporosis. To date, genetic variants in more than 60 loci have been identified as associated with BMD. To investigate the genetic determinants of TB-BMD variation along the life course and test for age-specific effects, we performed a meta-analysis of 30 genome-wide association studies (GWASs) of TB-BMD including 66,628 individuals overall and divided across five age strata, each spanning 15 years. We identified variants associated with TB-BMD at 80 loci, of which 36 have not been previously identified; overall, they explain approximately 10% of the TB-BMD variance when combining all age groups and influence the risk of fracture. Pathway and enrichment analysis of the association signals showed clustering within gene sets implicated in the regulation of cell growth and SMAD proteins, overexpressed in the musculoskeletal system, and enriched in enhancer and promoter regions. These findings reveal TB-BMD as a relevant trait for genetic studies of osteoporosis, enabling the identification of variants and pathways influencing different bone compartments. Only variants in ESR1 and close proximity to RANKL showed a clear effect dependency on age. This most likely indicates that the majority of genetic variants identified influence BMD early in life and that their effect can be captured throughout the life course.


Subject(s)
Bone Density/genetics , Genome-Wide Association Study , Adolescent , Age Factors , Animals , Child , Child, Preschool , Genetic Loci , Humans , Infant , Infant, Newborn , Mice, Knockout , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable , Regression Analysis
18.
Am J Respir Crit Care Med ; 197(5): 589-594, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29121479

ABSTRACT

RATIONALE: Experimental evidence suggests that CDHR3 (cadherin-related family member 3) is a receptor for rhinovirus (RV)-C, and a missense variant in this gene (rs6967330) is associated with childhood asthma with severe exacerbations. OBJECTIVES: To determine whether rs6967330 influences RV-C infections and illnesses in early childhood. METHODS: We studied associations between rs6967330 and respiratory infections and illnesses in the COPSAC2010 (Copenhagen Prospective Studies on Asthma in Childhood 2010) and COAST (Childhood Origins of Asthma Birth Cohort Study) birth cohorts, where respiratory infections were monitored prospectively for the first 3 years of life. Nasal samples were collected during acute infections in both cohorts and during asymptomatic periods in COAST and analyzed for RV-A, RV-B, and RV-C, and other common respiratory viruses. MEASUREMENTS AND MAIN RESULTS: The CDHR3 asthma risk allele (rs6967330-A) was associated with increased risk of respiratory tract illnesses (incidence risk ratio [IRR] = 1.14 [95% confidence interval, 1.05-1.23]; P = 0.003). In particular, this variant was associated with risk of respiratory episodes with detection of RV-C in COPSAC2010 (IRR = 1.89 [1.14-3.05]; P = 0.01) and in COAST (IRR = 1.37 [1.02-1.82]; P = 0.03) children, and in a combined meta-analysis (IRR = 1.51 [1.13-2.02]; P = 0.006). In contrast, the variant was not associated with illnesses related to other viruses (IRR = 1.07 [0.92-1.25]; P = 0.37). Consistent with these observations, the CDHR3 variant was associated with increased detection of RV-C, but not of other viruses during scheduled visits at specific ages. CONCLUSIONS: The CDHR3 asthma risk allele is associated specifically with RV-C illnesses in two birth cohorts. This clinical evidence supports earlier molecular evidence indicating that CDHR3 functions as an RV-C receptor, and raises the possibility of preventing RV-C infections by targeting CDHR3.


Subject(s)
Asthma/genetics , Cadherins/genetics , Enterovirus Infections/genetics , Enterovirus/genetics , Membrane Proteins/genetics , Adult , Alleles , Cadherin Related Proteins , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Male , Prospective Studies
19.
Sci Rep ; 7(1): 2224, 2017 05 22.
Article in English | MEDLINE | ID: mdl-28533558

ABSTRACT

Observational studies on smoking and risk of hay fever and asthma have shown inconsistent results. However, observational studies may be biased by confounding and reverse causation. Mendelian randomization uses genetic variants as markers of exposures to examine causal effects. We examined the causal effect of smoking on hay fever and asthma by using the smoking-associated single nucleotide polymorphism (SNP) rs16969968/rs1051730. We included 231,020 participants from 22 population-based studies. Observational analyses showed that current vs never smokers had lower risk of hay fever (odds ratio (OR) = 0·68, 95% confidence interval (CI): 0·61, 0·76; P < 0·001) and allergic sensitization (OR = 0·74, 95% CI: 0·64, 0·86; P < 0·001), but similar asthma risk (OR = 1·00, 95% CI: 0·91, 1·09; P = 0·967). Mendelian randomization analyses in current smokers showed a slightly lower risk of hay fever (OR = 0·958, 95% CI: 0·920, 0·998; P = 0·041), a lower risk of allergic sensitization (OR = 0·92, 95% CI: 0·84, 1·02; P = 0·117), but higher risk of asthma (OR = 1·06, 95% CI: 1·01, 1·11; P = 0·020) per smoking-increasing allele. Our results suggest that smoking may be causally related to a higher risk of asthma and a slightly lower risk of hay fever. However, the adverse events associated with smoking limit its clinical significance.


Subject(s)
Asthma/epidemiology , Asthma/etiology , Rhinitis, Allergic, Seasonal/epidemiology , Rhinitis, Allergic, Seasonal/etiology , Adolescent , Adult , Alleles , Disease Susceptibility , Genetic Predisposition to Disease , Genotype , Humans , Mendelian Randomization Analysis , Middle Aged , Odds Ratio , Smoking/adverse effects , Young Adult
20.
Nucleic Acids Res ; 41(Web Server issue): W286-91, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23761454

ABSTRACT

Identifying which mutation(s) within a given genotype is responsible for an observable phenotype is important in many aspects of molecular biology. Here, we present SigniSite, an online application for subgroup-free residue-level genotype-phenotype correlation. In contrast to similar methods, SigniSite does not require any pre-definition of subgroups or binary classification. Input is a set of protein sequences where each sequence has an associated real number, quantifying a given phenotype. SigniSite will then identify which amino acid residues are significantly associated with the data set phenotype. As output, SigniSite displays a sequence logo, depicting the strength of the phenotype association of each residue and a heat-map identifying 'hot' or 'cold' regions. SigniSite was benchmarked against SPEER, a state-of-the-art method for the prediction of specificity determining positions (SDP) using a set of human immunodeficiency virus protease-inhibitor genotype-phenotype data and corresponding resistance mutation scores from the Stanford University HIV Drug Resistance Database, and a data set of protein families with experimentally annotated SDPs. For both data sets, SigniSite was found to outperform SPEER. SigniSite is available at: http://www.cbs.dtu.dk/services/SigniSite/.


Subject(s)
Genetic Association Studies/methods , Sequence Alignment , Sequence Analysis, Protein , Software , Drug Resistance, Viral/genetics , Genotype , HIV Protease/genetics , HIV Protease Inhibitors/pharmacology , HIV-1/drug effects , HIV-1/genetics , Internet , Mutation , Phenotype , Position-Specific Scoring Matrices
SELECTION OF CITATIONS
SEARCH DETAIL
...