Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Med Sci Sports Exerc ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38650113

ABSTRACT

PURPOSE: We investigated the effects of low and high volume speed endurance training (SET), with a reduced training volume, on sprint ability, short- and long-term exercise capacity, muscle mitochondrial properties, ion transport proteins and maximal enzyme activity in highly trained athletes. METHODS: Highly-trained male cyclists (V̇O2max: 68.3 ± 5.0 mL × min-1 × kg-1, n = 24) completed six weeks of either low (SET-L; 6x30-s intervals, n = 8) or high (SET-H; 12 × 30-s intervals, n = 8) volume SET twice per week with a 30%-reduction in training volume. A control group (CON, n = 8) maintained their training. Exercise performance was evaluated by i) 6-s sprinting, ii) a 4-min time trial, iii) a 60-min preload at 60% V̇O2max followed by a 20-min time trial. A biopsy of m. vastus lateralis was collected before and after the training intervention. RESULTS: In SET-L, 4-min time trial performance was improved (P < 0.05) by 3.8%, with no change in SET-H and CON. Sprint ability, prolonged endurance exercise capacity, V̇O2max, muscle mitochondrial respiratory capacity, maximal citrate synthase activity, fiber-type specific mitochondrial proteins (complex I - V) and PFK content did not change in any of the groups. In SET-H, maximal activity of muscle PFK and abundance of Na+-K+ pump-subunit α1, α2, ß1, and phospholemman (FXYD1) were 20%, 50%, 19%, 24%, and 42 % higher (P < 0.05), respectively after compared to before the intervention, with no changes in SET-L or CON. CONCLUSIONS: Low SET volume combined with a reduced aerobic low and moderate intensity training volume does improve short duration intense exercise performance and maintain sprinting ability, V̇O2max, endurance exercise performance and muscle oxidative capacity, whereas, high volume of SET appears necessary to upregulate muscle ion transporter content and maximal PFK activity in highly trained cyclists.

2.
Scand J Med Sci Sports ; 34(4): e14629, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38646853

ABSTRACT

BACKGROUND: Athletes commonly use creatine, caffeine, and sodium bicarbonate for performance enhancement. While their isolated effects are well-described, less is known about their potential additive effects. METHODS: Following a baseline trial, we randomized 12 endurance-trained males (age: 25 ± 5 years, VO2max: 56.7 ± 4.6 mL kg-1 min-1; mean ± SD) and 11 females (age: 25 ± 3 years, VO2max: 50.2 ± 3.4 mL kg-1 min-1) to 5 days of creatine monohydrate (0.3 g kg-1 per day) or placebo loading, followed by a daily maintenance dose (0.04 g kg-1) throughout the study. After the loading period, subjects completed four trials in randomized order where they ingested caffeine (3 mg kg-1), sodium bicarbonate (0.3 g kg-1), placebo, or both caffeine and sodium bicarbonate before a maximal voluntary contraction (MVC), 15-s sprint, and 6-min time trial. RESULTS: Compared to placebo, mean power output during 15-s sprint was higher following loading with creatine than placebo (+34 W, 95% CI: 10 to 58, p = 0.008), but with no additional effect of caffeine (+10 W, 95% CI: -7 to 24, p = 0.156) or sodium bicarbonate (+5 W, 95% CI: -4 to 13, p = 0.397). Mean power output during 6-min time trial was higher with caffeine (+12 W, 95% CI: 5 to 18, p = 0.001) and caffeine + sodium bicarbonate (+8 W, 95% CI: 0 to 15, p = 0.038), whereas sodium bicarbonate (-1 W, 95% CI: -7 to 6, p = 0.851) and creatine (-6 W, 95% CI: -15 to 4, p = 0.250) had no effects. CONCLUSION: While creatine and caffeine can enhance sprint- and time trial performance, respectively, these effects do not seem additive. Therefore, supplementing with either creatine or caffeine appears sufficient to enhance sprint or short intense exercise performance.


Subject(s)
Athletic Performance , Caffeine , Creatine , Performance-Enhancing Substances , Sodium Bicarbonate , Humans , Caffeine/pharmacology , Caffeine/administration & dosage , Sodium Bicarbonate/administration & dosage , Sodium Bicarbonate/pharmacology , Male , Creatine/administration & dosage , Creatine/pharmacology , Adult , Female , Young Adult , Performance-Enhancing Substances/administration & dosage , Performance-Enhancing Substances/pharmacology , Athletic Performance/physiology , Physical Endurance/drug effects , Endurance Training , Double-Blind Method , Oxygen Consumption/drug effects
3.
Scand J Med Sci Sports ; 34(1): e14567, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38268072

ABSTRACT

Given the prevalent use of inhaled beta2 -agonists in sports, there is an ongoing debate as to whether they enhance athletic performance. Over the last decades, inhaled beta2 -agonists have been claimed not to enhance performance with little consideration of dose or exercise modality. In contrast, orally administered beta2 -agonists are perceived as being performance enhancing, predominantly on muscle strength and sprint ability, but can also induce muscle hypertrophy and slow-to-fast fiber phenotypic switching. But because inhaled beta2 -agonists are more efficient to achieve high systemic concentrations than oral delivery relative to dose, it follows that the inhaled route has the potential to enhance performance too. The question is at which inhaled doses such effects occur. While supratherapeutic doses of inhaled beta2 -agonists enhance muscle strength and short intense exercise performance, effects at low therapeutic doses are less apparent. However, even high therapeutic inhaled doses of commonly used beta2 -agonists have been shown to induce muscle hypertrophy and to enhance sprint performance. This is concerning from an anti-doping perspective. In this paper, we raise awareness of the circumstances under which inhaled beta2 -agonists can constitute a performance-enhancing benefit.


Subject(s)
Athletic Performance , Exercise , Humans , Muscle Strength , Hypertrophy
4.
Scand J Med Sci Sports ; 34(1): e14358, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36965010

ABSTRACT

Athletes often experience lower airway dysfunction, such as asthma and exercise-induced bronchoconstriction (EIB), which affects more than half the athletes in some sports, not least in endurance sports. Symptoms include coughing, wheezing, and breathlessness, alongside airway narrowing, hyperresponsiveness, and inflammation. Early diagnosis and management are essential. Not only because untreated or poorly managed asthma and EIB potentially affects competition performance and training, but also because untreated airway inflammation can result in airway epithelial damage, remodeling, and fibrosis. Asthma and EIB do not hinder performance, as advancements in treatment strategies have made it possible for affected athletes to compete at the highest level. However, practitioners and athletes must ensure that the treatment complies with general guidelines and anti-doping regulations to prevent the risk of a doping sanction because of inadvertently exceeding specified dosing limits. In this review, we describe considerations and challenges in diagnosing and managing athletes with asthma and EIB. We also discuss challenges facing athletes with asthma and EIB, while also being subject to anti-doping regulations.


Subject(s)
Asthma, Exercise-Induced , Asthma , Doping in Sports , Humans , Bronchoconstriction , Doping in Sports/prevention & control , Asthma, Exercise-Induced/diagnosis , Asthma/diagnosis , Athletes , Inflammation
5.
Scand J Med Sci Sports ; 34(1): e14500, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37880916

ABSTRACT

PURPOSE: Many athletes use long-acting beta2 -agonist formoterol in treatment of asthma. However, studies in non-athlete cohorts demonstrate that inhaled formoterol can enhance sprint performance calling into question whether its use in competitive sports should be restricted. We investigated whether formoterol at upper recommended inhaled doses (54 µg) would enhance sprint ability and intense exercise performance in elite cyclists. METHODS: Twenty-one male cyclists (V̇O2max : 70.4 ± 4.3 mL × min-1 × kg-1 , mean ± SD) completed two 6-s all-out sprints followed by 4-min all-out cycling after inhaling either 54 µg formoterol or placebo. We also assessed cyclists' leg muscle mass by dual-energy X-ray absorptiometry and muscle fiber type distribution of vastus lateralis biopsies. RESULTS: Peak and mean power output during the 6-s sprint was 32 W (95% CI, 19-44 W, p < 0.001) and 36 W (95% CI, 24-48 W, p < 0.001) higher with formoterol than placebo, corresponding to an enhancing effect of around 3%. Power output during 4-min all-out cycling was 9 W (95% CI, 2-16 W, p = 0.01) greater with formoterol than placebo, corresponding to an enhancing effect of 2.3%. Performance changes in response to formoterol were unrelated to cyclists' VO2max and leg lean mass, whereas muscle fiber Type I distribution correlated with change in sprinting peak power in response to formoterol (r2 = 0.314, p = 0.012). CONCLUSION: Our findings demonstrate that an inhaled one-off dose of 54 µg formoterol has a performance-enhancing potential on sprint ability and short intense performance in elite male cyclists, which is irrespective of training status but partly related to muscle fiber type distribution for sprint ability.


Subject(s)
Asthma , Athletic Performance , Humans , Male , Formoterol Fumarate/pharmacology , Muscle, Skeletal , Exercise , Quadriceps Muscle/physiology , Bicycling/physiology , Athletic Performance/physiology
6.
ERJ Open Res ; 9(6)2023 Nov.
Article in English | MEDLINE | ID: mdl-38152086

ABSTRACT

Introduction: Many athletes use short-acting inhaled ß2-agonists multiple times weekly during training sessions to prevent exercise-induced bronchoconstriction, but it is unclear if treatment impairs training outcomes. Herein, we investigated performance adaptations in well-trained females and males training with prior inhalation of salbutamol. Methods: 19 females and 21 males with maximal oxygen uptake (V'O2max) of 50.5±3.3 and 57.9±4.9 mL·min-1·kg-1, respectively, participated in this double-blinded, placebo-controlled, parallel-group study. We randomised participants to placebo or salbutamol inhalation (800-1600 µg·training day-1) for 6 weeks of combined endurance (1× per week) and high-intensity interval training (2× per week). We assessed participants' body composition, V'O2max and muscle contractile function, and collected vastus lateralis muscle biopsies. Results: Salbutamol induced a sex-specific loss of whole-body fat mass (sex×treatment: p=0.048) where only salbutamol-treated females had a fat mass reduction compared to placebo (-0.8 kg at 6 weeks; 95% CI: -0.5 to -1.6; p=0.039). Furthermore, salbutamol-treated females exhibited a repartitioning effect, lowering fat mass while gaining lean mass (p=0.011), which was not apparent for males (p=0.303). Salbutamol negatively impacted V'O2max in both sexes (treatment main effect: p=0.014) due to a blunted increase in V'O2max during the initial 4 weeks of the intervention. Quadriceps contractile strength was impaired in salbutamol-treated females (-39 N·m; 95% CI: -61 to -17; p=0.002) compared to placebo at 6 weeks. Muscle electron transport chain complex I-V abundance increased with salbutamol (treatment main effect: p=0.035), while content of SERCAI, ß2-adrenoceptor and desmin remained unchanged. Conclusion: Inhaled salbutamol appears to be an effective repartitioning agent in females but may impair aerobic and strength-related training outcomes.

7.
Nat Commun ; 14(1): 6674, 2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37865681

ABSTRACT

Groundwater recharge feeds aquifers supplying fresh-water to a population over 80 million in Iran-a global hotspot for groundwater depletion. Using an extended database comprising abstractions from over one million groundwater wells, springs, and qanats, from 2002 to 2017, here we show a significant decline of around -3.8 mm/yr in the nationwide groundwater recharge. This decline is primarily attributed to unsustainable water and environmental resources management, exacerbated by decadal changes in climatic conditions. However, it is important to note that the former's contribution outweighs the latter. Our results show the average annual amount of nationwide groundwater recharge (i.e., ~40 mm/yr) is more than the reported average annual runoff in Iran (i.e., ~32 mm/yr), suggesting the surface water is the main contributor to groundwater recharge. Such a decline in groundwater recharge could further exacerbate the already dire aquifer depletion situation in Iran, with devastating consequences for the country's natural environment and socio-economic development.

8.
ERJ Open Res ; 9(2)2023 Mar.
Article in English | MEDLINE | ID: mdl-37101738

ABSTRACT

Background: The 2022 Global Initiative for Asthma guidelines emphasise the inhaled long-acting ß2-agonist formoterol as part of the first treatment step, and therefore formoterol use among athletes will probably increase. However, prolonged supratherapeutic use of inhaled ß2-agonists impairs training outcomes in moderately trained men. We investigated whether inhaled formoterol, at therapeutic doses, imposes detrimental effects in endurance-trained individuals of both sexes. Methods: 51 endurance-trained participants (31 male, 20 female; mean±sd maximal oxygen consumption (V̇ O2 max) 62±6 mL·min-1·kg bw-1 and 52±5 mL·min-1·kg bw-1, respectively) inhaled formoterol (24 µg; n=26) or placebo (n=25) twice daily for 6 weeks. At baseline and follow-up, we assessed V̇ O2 max and incremental exercise performance during a bike-ergometer ramp-test; body composition by dual-energy X-ray absorptiometry; muscle oxidative capacity by high-resolution mitochondrial respirometry, enzymatic activity assays and immunoblotting; intravascular volumes by carbon monoxide rebreathing; and cardiac left ventricle mass and function by echocardiography. Results: Compared to placebo, formoterol increased lean body mass by 0.7 kg (95% CI 0.2-1.2 kg; treatment×trial p=0.022), but decreased V̇ O2 max by 5% (treatment×trial p=0.013) and incremental exercise performance by 3% (treatment×trial p<0.001). In addition, formoterol lowered muscle citrate synthase activity by 15% (treatment×trial p=0.063), mitochondrial complex II and III content (treatment×trial p=0.028 and p=0.007, respectively), and maximal mitochondrial respiration through complexes I and I+II by 14% and 16% (treatment×trial p=0.044 and p=0.017, respectively). No apparent changes were observed in cardiac parameters and intravascular blood volumes. All effects were sex-independent. Conclusion: Our findings demonstrate that inhaled therapeutic doses of formoterol impair aerobic exercise capacity in endurance-trained individuals, which is in part related to impaired muscle mitochondrial oxidative capacity. Thus, if low-dose formoterol fails to control respiratory symptoms in asthmatic athletes, physicians may consider alternative treatment options.

9.
Drug Test Anal ; 15(5): 516-528, 2023 May.
Article in English | MEDLINE | ID: mdl-36610030

ABSTRACT

The 2023 Prohibited List issued by the World Anti-Doping Agency (WADA) permits athletes to inhale the beta2 -agonist vilanterol at a standard dose of 25 µg daily. However, given limited data on urine pharmacokinetics, vilanterol has no urinary threshold or decision limit to discriminate therapeutic from supratherapeutic use. We investigated urine concentrations of vilanterol and its main metabolites GSK932009 and GW630200 over 0-72 h following inhalation of therapeutic (25 µg) or supratherapeutic (100 µg) doses and repeat-dose administration for 7 days of 25 or 100 µg·day-1 in 25 trained men and women. Vilanterol administration was followed by 1 h of exercise. GW630200 urine concentrations were low and insufficient for threshold purposes, and while GSK932009 had higher urine concentrations, it could not discriminate between therapeutic and supratherapeutic use. Mean (range) maximum urine concentrations of parent vilanterol were 1.2 (0.2-4.1) and 6.2 (1.4-14.3) ng·ml-1 for single-dose 25 and 100 µg vilanterol, respectively, and 2.0 (0.3-4.8) and 22.4 (6.4-42.1) ng·ml-1 for repeat-dose 25 and 100 µg·day-1 vilanterol. In 333 samples collected 6 h post-administration and considering WADA TD2022DL, a 3.1 ng·ml-1 vilanterol cut-off showed 30% sensitivity in detecting supratherapeutic use at 100 µg versus therapeutic use at 25 µg. Considering inter- and intra-individual variability and guard bands in doping analysis, a 6 ng·ml-1 decision limit, which could be shifted upwards in samples with specific gravity >1.018, appears sufficiently high to minimize risk of samples exceeding the decision limit after therapeutic use of vilanterol, while demonstrating the ability to detect supratherapeutic use at 100 µg.


Subject(s)
Adrenergic beta-2 Receptor Agonists , Doping in Sports , Male , Humans , Female , Benzyl Alcohols/pharmacokinetics , Chlorobenzenes/pharmacokinetics , Administration, Inhalation
10.
J Appl Physiol (1985) ; 133(3): 732-741, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35952346

ABSTRACT

It is unclear whether resistance training-induced myofiber hypertrophy is affected by sex, and whether myonuclear addition occurs in relation to the myonuclear domain and can contribute to explaining a potential sex-specific hypertrophic response. This study investigated the effect of 8 wk of resistance training on myofiber hypertrophy and myonuclear addition in 12 males (28 ± 7 yr; mean ± SD) and 12 females (27 ± 7 yr). Muscle biopsies were collected from m. vastus lateralis before and after the training intervention and were analyzed by immunohistochemistry for fiber type and size, satellite cells, and myonuclei. Hypertrophy of type I fibers was greater in males than females (P < 0.05), whereas hypertrophy of type II fibers was similar between sexes (P = 0.158-0.419). Expansion of the satellite cell pool (P = 0.132-0.667) and myonuclear addition (P = 0.064-0.228) did not differ significantly between sexes, irrespective of myofiber type. However, when individual responses to resistance training were assessed, myonuclear addition was strongly correlated with fiber hypertrophy (r = 0.68-0.85, P < 0.001). Although myofiber hypertrophy was accompanied by an increase in myonuclear domain (P < 0.05), fiber perimeter per myonucleus remained constant throughout the study (P = 0.096-0.666). These findings indicate that myonuclear addition occurs in relation to the fiber perimeter per myonucleus, not the myonuclear domain, and has a substantial role in resistance training-induced muscle hypertrophy but does not fully explain greater hypertrophy of type I fibers in males than females.NEW & NOTEWORTHY Here, we show that resistance training-induced hypertrophy of type I fibers is greater in males than females. Myonuclear addition was strongly associated with fiber hypertrophy but did not differ between sexes in type I fibers. Furthermore, whereas muscle hypertrophy was accompanied by an increase in myonuclear domain, fiber perimeter per myonucleus remained constant. Thus, myonuclear addition occurs in relation to fiber perimeter during muscle hypertrophy but does not explain sex-specific hypertrophy of type I fibers.


Subject(s)
Resistance Training , Satellite Cells, Skeletal Muscle , Female , Humans , Hypertrophy/metabolism , Male , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/pathology , Quadriceps Muscle , Satellite Cells, Skeletal Muscle/physiology
11.
MethodsX ; 9: 101706, 2022.
Article in English | MEDLINE | ID: mdl-35518916

ABSTRACT

The ability to identify the origin of phosphorus and understand processes controlling P cycling is essential for designing effective mitigation and restoration of eutrophic freshwater ecosystems. The oxygen isotope composition of orthophosphate (δ18Op) has significant potential as a tracer for P entering freshwater ecosystems. However, methods of analysis of δ18Op are still in their preliminary stages and have proven challenging to implement for new practitioners. In order to achieve progress in developing the application of δ18Op signatures as a tracing tool, there is a need to eliminate the methodological challenges involved in accurately determining δ18Op. This protocol article describes the various steps needed to concentrate and isolate orthophosphate in freshwater samples into an adequately pure Ag3PO4 analyte, without isotopic alteration during processing. The protocol compiles the disperse experiences from previous studies, combined with our own experience. The twofold aim of the paper is toprovide a baseline for an increasing standardisation of the silver phosphate purification method associated with analysis of the oxygen isotope composition of orthophosphate (δ18Op), and to foster new research in the applicability of δ18Op signatures for P source tracing in catchment science.

12.
Scand J Med Sci Sports ; 32(7): 1099-1108, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35460295

ABSTRACT

OBJECTIVE: Several tissues produce and release interleukin-6 (IL-6) in response to beta2 -adrenergic stimulation with selective agonists (beta2 -agonists). Moreover, exercise stimulates muscle IL-6 production, but whether beta2 -agonists regulate skeletal muscle production and release of IL-6 in humans in association with exercise remains to be clarified. Thus, we investigated leg IL-6 release in response to beta2 -agonist salbutamol in lean young men at rest and in recovery from resistance exercise. DESIGN: The study employed a randomized controlled crossover design, where 12 men ingested either salbutamol (16 mg) or placebo for 4 days, followed by the last dose (24 mg) administered 1½ h before exercise. Arterial and femoral venous plasma IL-6 as well as femoral artery blood flow was measured before and ½-5 h in recovery from quadriceps muscle resistance exercise. Furthermore, vastus lateralis muscle biopsies were collected ½ and 5 h after exercise for determination of mRNA levels of IL-6 and Tumor Necrosis Factor (TNF)-α. RESULTS: Average leg IL-6 release was 1.7-fold higher (p = 0.01) for salbutamol than placebo, being 138 ± 76 and 79 ± 66 pg min-1 (mean ± SD) for salbutamol and placebo, respectively, but IL-6 release was not significantly different between treatments within specific sampling points at rest and after exercise. Muscle IL-6 mRNA was 1.5- and 1.7-fold higher (p = 0.001) for salbutamol than placebo ½ and 5 h after exercise, respectively, whereas no significant treatment differences were observed for TNF-α mRNA. CONCLUSIONS: Beta2 -adrenergic stimulation with high doses of the selective beta2 -agonist salbutamol, preceeded by 4 consecutive daily doses, induces transcription of IL-6 in skeletal muscle in response to resistance exercise, and increases muscle IL-6 release in lean individuals.


Subject(s)
Interleukin-6 , Resistance Training , Adrenergic Agents , Adrenergic beta-2 Receptor Agonists/pharmacology , Albuterol/pharmacology , Humans , Male , Muscle, Skeletal/physiology , RNA, Messenger , Tumor Necrosis Factor-alpha
13.
Sports Med ; 52(12): 2813-2819, 2022 12.
Article in English | MEDLINE | ID: mdl-35471634

ABSTRACT

There is an increasing interest in female athletic performance-especially concerning the impact of the female menstrual cycle on training response. Indeed, fluctuations in female sex hormones, estrogen and progesterone, during the menstrual cycle regulate protein metabolism and recovery processes in skeletal muscle and may thus impact exercise training-related outcomes. Studies demonstrate that anaerobic capacity and muscle strength are greatest during the follicular phase of the menstrual cycle, when estrogen levels peak. In addition, studies indicate that resistance training conducted in the follicular phase of the menstrual cycle (follicular phase-based resistance training) may be superior to luteal phase-based training in terms of enhancing muscle strength and mass. This raises the possibility that the physiological capabilities of skeletal muscle to adapt to exercise training are dependent on the menstrual cycle and can be important for female athletes in optimizing their training. In this paper, we critically review the current state of the art concerning the impact of menstrual cycle phase-based resistance training and highlight why follicular phase-based resistance training possibly is superior to luteal phase-based training in enhancing resistance training outcomes. Finally, we identify directions for further research.


Subject(s)
Luteal Phase , Resistance Training , Female , Humans , Menstrual Cycle/physiology , Muscle Strength , Estrogens
14.
Int J Sports Physiol Perform ; 17(6): 979-990, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35338107

ABSTRACT

PURPOSE: This study tested the hypothesis of whether ischemic exercise preconditioning (IPC-Ex) elicits a better intense endurance exercise performance than traditional ischemic preconditioning at rest (IPC-rest) and a SHAM procedure. METHODS: Twelve men (average V˙O2max ∼61 mL·kg-1·min-1) performed 3 trials on separate days, each consisting of either IPC-Ex (3 × 2-min cycling at ∼40 W with a bilateral-leg cuff pressure of ∼180 mm Hg), IPC-rest (4 × 5-min supine rest at 220 mm Hg), or SHAM (4 × 5-min supine rest at <10 mm Hg) followed by a standardized warm-up and a 4-minute maximal cycling performance test. Power output, blood lactate, potassium, pH, rating of perceived exertion, oxygen uptake, and gross efficiency were assessed. RESULTS: Mean power during the performance test was higher in IPC-Ex versus IPC-rest (+4%; P = .002; 95% CI, +5 to 18 W). No difference was found between IPC-rest and SHAM (-2%; P = .10; 95% CI, -12 to 1 W) or between IPC-Ex and SHAM (+2%; P = .09; 95% CI, -1 to 13 W). The rating of perceived exertion increased following the IPC-procedure in IPC-Ex versus IPC-rest and SHAM (P < .001). During warm-up, IPC-Ex elevated blood pH versus IPC-rest and SHAM (P ≤ .027), with no trial differences for blood potassium (P > .09) or cycling efficiency (P ≥ .24). Eight subjects anticipated IPC-Ex to be best for their performance. Four subjects favored SHAM. CONCLUSIONS: Performance in a 4-minute maximal test was better following IPC-Ex than IPC-rest and tended to be better than SHAM. The IPC procedures did not affect blood potassium, while pH was transiently elevated only by IPC-Ex. The performance-enhancing effect of IPC-Ex versus IPC-rest may be attributed to a placebo effect, improved pH regulation, and/or a change in the perception of effort.


Subject(s)
Ischemic Preconditioning , Oxygen Consumption , Bicycling/physiology , Exercise Test , Humans , Ischemic Preconditioning/methods , Male , Oxygen Consumption/physiology , Potassium
15.
J Physiol ; 600(10): 2345-2357, 2022 05.
Article in English | MEDLINE | ID: mdl-35218559

ABSTRACT

Rodent studies highlight enhancement of glucose tolerance and insulin sensitivity as potential clinically relevant effects of chronic beta2 -agonist treatment. However, the doses administered to rodents are not comparable with the therapeutic doses used for humans. Thus, we investigated the physiological effects of prolonged beta2 -agonist treatment at inhaled doses resembling those used in respiratory diseases on insulin-stimulated whole-body glucose disposal and putative mechanisms in skeletal muscle and adipose tissue of healthy men. Utilizing a randomized placebo-controlled parallel-group design, we assigned 21 healthy men to 4 weeks daily inhalation of terbutaline (TER; 4 mg × day-1 , n = 13) or placebo (PLA, n = 8). Before and after treatments, we assessed subjects' whole-body insulin-stimulated glucose disposal and body composition, and collected vastus lateralis muscle and abdominal adipose tissue biopsies. Glucose infusion rate increased by 27% (95% CI: 80 to 238 mg × min-1 , P = 0.001) in TER, whereas no significant changes occurred in PLA (95% CI: -37 to 195 mg × min-1 , P = 0.154). GLUT4 content in muscle or adipose tissue did not change, nor did hexokinase II content or markers of mitochondrial volume in muscle. Change in lean mass was associated with change in glucose infusion rate in TER (r = 0.59, P = 0.03). Beta2 -agonist treatment in close-to-therapeutic doses may augment whole-body insulin-stimulated glucose disposal in healthy young men and part of the change is likely to be explained by muscle hypertrophy. These findings highlight the therapeutic potential of beta2 -agonists for improving insulin sensitivity. KEY POINTS: While studies in rodents have highlighted beta2 -agonists as a means to augment insulin sensitivity, these studies utilized beta2 -agonists at doses inapplicable to humans. Herein we show that a 4-week treatment period with daily therapeutic inhalation of beta2 -agonist increases insulin-stimulated whole-body glucose disposal in young healthy lean men. This effect was associated with an increase of lean mass but not with changes in GLUT4 and hexokinase II or basal glycogen content in skeletal muscle nor GLUT4 content in abdominal adipose tissue. These findings suggest that the enhanced insulin-stimulated whole-body glucose disposal induced by a period of beta2 -agonist treatment in humans, at least in part, is attributed to muscle hypertrophy. Our observations extend findings in rodents and highlight the therapeutic potential of beta2 -agonists to enhance the capacity for glucose disposal and whole-body insulin sensitivity, providing important knowledge with potential application in insulin resistance.


Subject(s)
Glucose , Insulin Resistance , Adrenergic beta-2 Receptor Agonists , Glucose/pharmacology , Hexokinase/pharmacology , Humans , Hypertrophy , Insulin/pharmacology , Muscle, Skeletal , Polyesters/pharmacology
16.
J Appl Physiol (1985) ; 131(1): 238-249, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34013747

ABSTRACT

We investigated the effect of caffeine and acetaminophen on power output during a 6-min performance test, peripheral fatigue, and muscle protein kinase A (PKA) substrate phosphorylation. Fourteen men [age (means ± SD): 26 ± 6 yr; V̇o2max: 63.9 ± 5.0 mL·min-1·kg-1] completed four randomized trials with acetaminophen (1,500 mg), caffeine (5 mg·kg body wt-1), combined caffeine and acetaminophen (caffeine + acetaminophen), or placebo. Mean power output during the 6-min performance test (placebo mean: 312 ± 41 W) was higher with caffeine (+5 W; 95% CI: 1 to 9; P = 0.017) and caffeine + acetaminophen (+6 W; 95% CI: 0 to 12; P = 0.049) than placebo, but not with acetaminophen (+1 W; 95% CI: -4 to 7; P = 0.529). Decline in quadriceps maximal isometric voluntary torque immediately after the performance test was lower (treatment × time; P = 0.035) with acetaminophen (-40 N·m; 95% CI: -53 to -30; P < 0.001) and caffeine + acetaminophen (-44 N·m; 95% CI: -58 to -30; P < 0.001) than placebo (-53 N·m; 95% CI: -71 to -39; P < 0.001) but was similar with caffeine (-54 N·m; 95% CI: -69 to -38; P < 0.001). Muscle phosphocreatine content decreased more during the performance test (treatment × time; P = 0.036) with caffeine + acetaminophen (-55 mmol·kg dry wt-1; 95% CI: -65 to -46; P < 0.001) than placebo (-40 mmol·kg dry wt-1; 95% CI: -52 to -24; P < 0.001). Muscle net lactate accumulation was not different from placebo (+85 mmol·kg dry wt-1; 95% CI: 60 to 110; P < 0.001) for any treatment (treatment × time; P = 0.066), being +75 mmol·kg dry wt-1 (95% CI: 51 to 99; P < 0.001) with caffeine, +76 mmol·kg dry wt-1 (95% CI: 58 to 96; P < 0.001) with acetaminophen, and +103 mmol·kg dry wt-1 (95% CI: 89 to 115; P < 0.001) with caffeine + acetaminophen. Decline in muscle ATP and glycogen content and increase in PKA substrate phosphorylation was not different between treatments (treatment × time; P > 0.1). Thus, acetaminophen provides no additive performance enhancing effect to caffeine during 6-min maximal cycling. In addition, change in PKA activity is likely not a major mechanism of performance improvement with caffeine.NEW & NOTEWORTHY Here, we show that acetaminophen does not provide additive performance improvement to caffeine during a 6-min cycling ergometer performance test, and that acetaminophen does not improve performance on its own. Neither substance affects peripheral fatigue, muscle glycolytic energy production, or phosphorylation of muscle proteins of importance for ion handling. In contrast to previous suggestions, increased epinephrine action on muscle cells does not appear to be a major contributor to the performance enhancement with caffeine.


Subject(s)
Caffeine , Performance-Enhancing Substances , Acetaminophen , Double-Blind Method , Glycogen , Humans , Male , Muscle, Skeletal , Phosphocreatine
17.
Sports Med ; 51(7): 1353-1376, 2021 07.
Article in English | MEDLINE | ID: mdl-33811295

ABSTRACT

Some have questioned the evidence for performance-enhancing effects of several substances included on the World Anti-Doping Agency's Prohibited List due to the divergent or inconclusive findings in randomized controlled trials (RCTs). However, inductive statistical inference based on RCTs-only may result in biased conclusions because of the scarcity of studies, inter-study heterogeneity, too few outcome events, or insufficient power. An abductive inference approach, where the body of evidence is evaluated beyond considerations of statistical significance, may serve as a tool to assess the plausibility of performance-enhancing effects of substances by also considering observations and facts not solely obtained from RCTs. Herein, we explored the applicability of an abductive inference approach as a tool to assess the performance-enhancing effects of substances included on the Prohibited List. We applied an abductive inference approach to make inferences on debated issues pertaining to the ergogenic effects of recombinant human erythropoietin (rHuEPO), beta2-agonists and anabolic androgenic steroids (AAS), and extended the approach to more controversial drug classes where RCTs are limited. We report that an abductive inference approach is a useful tool to assess the ergogenic effect of substances included on the Prohibited List-particularly for substances where inductive inference is inconclusive. Specifically, a systematic abductive inference approach can aid researchers in assessing the effects of doping substances, either by leading to suggestions of causal relationships or identifying the need for additional research.


Subject(s)
Doping in Sports , Performance-Enhancing Substances , Pharmaceutical Preparations , Humans , Testosterone Congeners
19.
Drug Test Anal ; 13(4): 747-761, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33210444

ABSTRACT

As of 2020, use of beta2 -agonist salmeterol is restricted by the World Anti-Doping Agency (WADA) and is only permitted by inhalation at therapeutic doses not exceeding 200 µg in 24 h. In contrast to beta2 -agonists salbutamol and formoterol, WADA has not established a urine threshold for salmeterol despite its muscle hypertrophic actions observed in animals. Herein, we investigated plasma (0-4 h) and urine (0-24 h) concentrations (by ultra-high-performance liquid chromatography-tandem mass spectrometry [UHPLC-MS/MS]) of salmeterol and α-hydroxysalmeterol after dry powder inhalation at supratherapeutic (400 µg) and high therapeutic (200 µg) doses, and after seven consecutive days of therapeutic inhalation (200 µg × day-1 ) in 11 healthy endurance-trained men. During each trial, participants inhaled salmeterol before 1½ h moderate-intensity cycling. Mean ± SD maximum urine concentrations of salmeterol unadjusted for specific gravity reached 4.0 ± 1.6, 2.1 ± 1.5, and 2.2 ± 1.1 ng × ml-1 for 400 µg, 200 µg, and seven consecutive days of 200 µg, respectively, with corresponding maximum urine concentrations of α-hydroxysalmeterol being 11.6 ± 6.1, 5.7 ± 4.6, and 6.5 ± 2.6 ng × ml-1 . Within the relevant window for doping control (first 6 h post-inhalation), the present data (119 samples), along with 64 biobank urine samples, showed that a combined salmeterol and α-hydroxysalmeterol urine threshold with equal cut-offs of 3.3 ng × ml-1 was superior to a salmeterol-only threshold to discriminate therapeutic (200 µg) from supratherapeutic use (400 µg) with a sensitivity of 24% with 0% false positives when applying the WADA technical document (TD2019DL.v2) method of specific gravity adjustment. Thus, a combination of urine salmeterol and α-hydroxysalmeterol concentrations may be suitable for discriminating between therapeutic and supratherapeutic prohibited inhalation of salmeterol.


Subject(s)
Adrenergic beta-2 Receptor Agonists/pharmacokinetics , Albuterol/analogs & derivatives , Salmeterol Xinafoate/pharmacokinetics , Substance Abuse Detection/methods , Administration, Inhalation , Adrenergic beta-2 Receptor Agonists/administration & dosage , Adrenergic beta-2 Receptor Agonists/analysis , Adult , Albuterol/analysis , Albuterol/pharmacokinetics , Chromatography, High Pressure Liquid , Doping in Sports/prevention & control , Dry Powder Inhalers , Humans , Male , Salmeterol Xinafoate/administration & dosage , Salmeterol Xinafoate/analysis , Tandem Mass Spectrometry , Young Adult
20.
J Appl Physiol (1985) ; 130(3): 617-626, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33357007

ABSTRACT

In this study, we examined the effect of ß2-agonist salbutamol at oral doses during a period of resistance training on sprint performance, quadriceps contractile function, skeletal muscle hypertrophy, fiber type composition, maximal activity of enzymes of importance for anaerobic energy turnover, and sarcoplasmic reticulum Ca2+ handling in young men. Twenty-six men (23 ± 2 yr; means ± SD) were randomized to daily intake of oral salbutamol (16 mg/day; RES+SAL) or placebo (RES) during 11 wk of full-body resistance training 3 times/wk. Mean power output during 10-s maximal cycling increased more (P = 0.027) in RES+SAL (+12%) than in RES (+7%), whereas peak power output increased similarly (RES+SAL: +8%; RES: +7%; P = 0.400). Quadriceps dynamic peak torque and maximal voluntary isometric torque increased by 13 and 14% (P ≤ 0.001) in RES+SAL and 13 and 13% (P ≤ 0.001) in RES, respectively. Myosin heavy-chain (MHC) isoform distribution transitioned from MHCI and MHCIIx toward MHCIIa in RES+SAL (P = 0.002), but not in RES (P = 0.323). MHCIIa cross-sectional-area increased more (P = 0.040) in RES+SAL (+35%) than RES (+21%). Sarcoplasmic reticulum Ca2+ release rate increased in both groups (RES+SAL: +9%, P = 0.048; RES: +13%, P = 0.008), whereas Ca2+-uptake rate increased only in RES (+12%, P = 0.022) but was not different from the nonsignificant change in RES+SAL (+2%, P = 0.484). Maximal activity of lactate dehydrogenase increased only in RES+SAL (+13%, P = 0.008). Muscle content of the dihydropyridine receptor, ryanodine receptor 1, and sarcoplasmic reticulum Ca2+-ATPase isoform 1 and 2 did not change with the intervention in either group (P ≥ 0.100). These observations indicate that the enhancement of sprint mean power output induced by salbutamol is at least partly attributed to greater hypertrophy of MHCIIa fibers and transition toward the MHCIIa isoform.NEW & NOTEWORTHY Here, we show that daily oral treatment with selective ß2-agonist salbutamol induces muscle fiber isoform transition from myosin-heavy-chain (MHC)-I toward MHCIIa and augments hypertrophy of MHCIIa fibers during a period of resistance training. Compared with placebo, salbutamol enhanced sprint mean power output, whereas peak power output and measures of muscle strength increased similarly during the resistance training period despite augmented hypertrophy with salbutamol. Thus, salbutamol is a muscle anabolic drug that can enhance sprint ability adaptations to resistance training.


Subject(s)
Resistance Training , Adrenergic Agonists , Adult , Albuterol , Cross-Sectional Studies , Humans , Hypertrophy , Male , Muscle Fibers, Skeletal , Muscle, Skeletal , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...