Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Health Perspect ; 131(11): 117007, 2023 11.
Article in English | MEDLINE | ID: mdl-37962439

ABSTRACT

BACKGROUND: Small-scale poultry production is widespread and increasing in low- and middle-income countries (LMICs). Exposure to enteropathogens in poultry feces increases the hazard of human infection and related sequela, and the burden of disease due to enteric infection in children <5 y in particular is substantial. Yet, the containment and management of poultry-associated fecal waste in informal settings in LMICs is largely unregulated. OBJECTIVES: To improve the understanding of potential exposures to enteropathogens carried by chickens, we used mixed methods to map and quantify microbial hazards along production value chains among broiler, layer, and indigenous chickens in Maputo, Mozambique. METHODS: To map and describe the value chains, we conducted 77 interviews with key informants working in locations where chickens and related products are sold, raised, and butchered. To quantify microbial hazards, we collected chicken carcasses (n=75) and fecal samples (n=136) from chickens along the value chain and assayed them by qPCR for the chicken-associated bacterial enteropathogens C. jejuni/coli and Salmonella spp. RESULTS: We identified critical hazard points along the chicken value chains and identified management and food hygiene practices that contribute to potential exposures to chicken-sourced enteropathogens. We detected C. jejuni/coli in 84 (76%) of fecal samples and 52 (84%) of carcass rinses and Salmonella spp. in 13 (11%) of fecal samples and 16 (21%) of carcass rinses. Prevalence and level of contamination increased as chickens progressed along the value chain, from no contamination of broiler chicken feces at the start of the value chain to 100% contamination of carcasses with C. jejuni/coli at informal markets. Few hazard mitigation strategies were found in the informal sector. DISCUSSION: High prevalence and concentration of C. jejuni/coli and Salmonella spp. contamination along chicken value chains suggests a high potential for exposure to these enteropathogens associated with chicken production and marketing processes in the informal sector in our study setting. We identified critical control points, such as the carcass rinse step and storage of raw chicken meat, that could be intervened in to mitigate risk, but regulation and enforcement pose challenges. This mixed-methods approach can also provide a model to understand animal value chains, sanitary risks, and associated exposures in other settings. https://doi.org/10.1289/EHP11761.


Subject(s)
Biological Assay , Chickens , Animals , Child , Humans , Mozambique/epidemiology , Disease Progression , Drug Contamination
2.
Gut Microbes ; 15(2): 2281010, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37992406

ABSTRACT

A high proportion of enteric infections, including those caused by diarrheagenic Escherichia coli (DEC), are asymptomatic for diarrhea. The factors responsible for the development of diarrhea symptoms, or lack thereof, remain unclear. Here, we used DEC isolate genome and whole stool microbiome data from a case-control study of diarrhea in Ecuador to examine factors associated with diarrhea symptoms accompanying DEC carriage. We investigated i) pathogen abundance, ii) gut microbiome characteristics, and iii) strain-level pathogen characteristics from DEC infections with diarrhea symptoms (symptomatic infections) and without diarrhea symptoms (asymptomatic infections). We also included data from individuals with and without diarrhea who were not infected with DEC (uninfected cases and controls). i) E. coli relative abundance in the gut microbiome was highly variable, but higher on-average in individuals with symptomatic compared to asymptomatic DEC infections. Similarly, the number and relative abundances of virulence genes in the gut were higher in symptomatic than asymptomatic DEC infections. ii) Measures of microbiome diversity were similar regardless of diarrhea symptoms or DEC carriage. Proteobacterial families that have been described as pathobionts were enriched in symptomatic infections and uninfected cases, whereas potentially beneficial taxa, including the Bacteroidaceae and Bifidobacteriaceae, were more abundant in individuals without diarrhea. An analysis of high-level gene functions recovered in metagenomes revealed that genes that were differentially abundant by diarrhea and DEC infection status were more abundant in symptomatic than asymptomatic DEC infections. iii) DEC isolates from symptomatic versus asymptomatic individuals showed no significant differences in virulence or accessory gene content, and there was no phylogenetic signal associated with diarrhea symptoms. Together, these data suggest signals that distinguish symptomatic from asymptomatic DEC infections. In particular, the abundance of E. coli, the virulence gene content of the gut microbiome, and the taxa present in the gut microbiome have an apparent role.


Subject(s)
Escherichia coli Infections , Gastrointestinal Microbiome , Humans , Escherichia coli , Escherichia coli Infections/microbiology , Gastrointestinal Microbiome/genetics , Ecuador , Case-Control Studies , Diarrhea/microbiology
3.
Am J Trop Med Hyg ; 109(3): 559-567, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37549901

ABSTRACT

Diarrheal diseases are a leading cause of mortality and morbidity in low- and middle-income countries. Diarrhea is associated with a wide array of etiological agents including bacterial, viral, and parasitic enteropathogens. Previous studies have captured between- but not within-country heterogeneities in enteropathogen prevalence and severity. We conducted a case-control study of diarrhea to understand how rates and outcomes of infection with diarrheagenic pathotypes of Escherichia coli vary across an urban-rural gradient in four sites in Ecuador. We found variability by site in enteropathogen prevalence and infection outcomes. Any pathogenic E. coli infection, coinfections, diffuse adherent E. coli (DAEC), enteroinvasive E. coli (EIEC), and rotavirus were significantly associated with acute diarrhea. DAEC was the most common pathotype overall and was more frequently associated with disease in urban areas. Enteropathogenic E. coli (EPEC) and enterotoxigenic E. coli (ETEC) were more common in rural areas. ETEC was only associated with diarrhea in one site. Phylogenetic analysis revealed that associations with disease were not driven by any single clonal complex. Higher levels of antibiotic resistance were detected in rural areas. Enteropathogen prevalence, virulence, and antibiotic resistance patterns vary substantially by site within Ecuador. The variations in E. coli pathotype prevalence and virulence in this study have important implications for control strategies by context and demonstrate the importance of capturing within-country differences in enteropathogen disease dynamics.


Subject(s)
Enteropathogenic Escherichia coli , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Humans , Escherichia coli Infections/microbiology , Case-Control Studies , Ecuador/epidemiology , Phylogeny , Enteropathogenic Escherichia coli/genetics , Diarrhea/microbiology , Enterotoxigenic Escherichia coli/genetics , Feces/microbiology
4.
Infect Genet Evol ; 113: 105476, 2023 09.
Article in English | MEDLINE | ID: mdl-37392822

ABSTRACT

Human movement may be an important driver of transmission dynamics for enteric pathogens but has largely been underappreciated except for international 'travelers' diarrhea or cholera. Phylodynamic methods, which combine genomic and epidemiological data, are used to examine rates and dynamics of disease matching underlying evolutionary history and biogeographic distributions, but these methods often are not applied to enteric bacterial pathogens. We used phylodynamics to explore the phylogeographic and evolutionary patterns of diarrheagenic E. coli in northern Ecuador to investigate the role of human travel in the geographic distribution of strains across the country. Using whole genome sequences of diarrheagenic E. coli isolates, we built a core genome phylogeny, reconstructed discrete ancestral states across urban and rural sites, and estimated migration rates between E. coli populations. We found minimal structuring based on site locations, urban vs. rural locality, pathotype, or clinical status. Ancestral states of phylogenomic nodes and tips were inferred to have 51% urban ancestry and 49% rural ancestry. Lack of structuring by location or pathotype E. coli isolates imply highly connected communities and extensive sharing of genomic characteristics across isolates. Using an approximate structured coalescent model, we estimated rates of migration among circulating isolates were 6.7 times larger for urban towards rural populations compared to rural towards urban populations. This suggests increased inferred migration rates of diarrheagenic E. coli from urban populations towards rural populations. Our results indicate that investments in water and sanitation prevention in urban areas could limit the spread of enteric bacterial pathogens among rural populations.


Subject(s)
Escherichia coli Infections , Escherichia coli , Humans , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Diarrhea/epidemiology , Rural Population , Ecuador/epidemiology , Metagenomics , Travel
5.
BMJ Open ; 11(10): e046241, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34686548

ABSTRACT

INTRODUCTION: The functional consequences of the bacterial gut microbiome for child health are not well understood. Characteristics of the early child gut microbiome may influence the course of enteric infections, and enteric infections may change the composition of the gut microbiome, all of which may have long-term implications for child growth and development. METHODS AND ANALYSIS: We are conducting a community-based birth cohort study to examine interactions between gut microbiome conditions and enteric infections, and how environmental conditions affect the development of the gut microbiome. We will follow 360 newborns from 3 sites along a rural-urban gradient in northern coastal Ecuador, characterising enteric infections and gut microbial communities in the children every 3 to 6 months over their first 2 years of life. We will use longitudinal regression models to assess the correlation between environmental conditions and gut microbiome diversity and presence of specific taxa, controlling for factors that are known to be associated with the gut microbiome, such as diet. From 6 to 12 months of age, we will collect weekly stool samples to compare microbiome conditions in diarrhoea stools versus stools from healthy children prior to, during and after acute enteric infections, using principal-coordinate analysis and other multivariate statistical methods. ETHICS AND DISSEMINATION: Ethics approvals have been obtained from Emory University and the Universidad San Francisco de Quito institutional review boards. The findings will be disseminated through conference presentations and peer-reviewed journals.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Cohort Studies , Feces , Humans , Prospective Studies
6.
Curr Opin Infect Dis ; 33(5): 372-380, 2020 10.
Article in English | MEDLINE | ID: mdl-32773499

ABSTRACT

PURPOSE OF REVIEW: Several types of Escherichia coli cause acute diarrhea in humans and are responsible for a large burden of disease globally. The purpose of this review is to summarize diarrheagenic Escherichia coli (DEC) pathotype definitions and discuss existing and emerging molecular, genomic, and gut microbiome methods to detect, define, and study DEC pathotypes. RECENT FINDINGS: DEC pathotypes are currently diagnosed by molecular detection of unique virulence genes. However, some pathotypes have defied coherent molecular definitions because of imperfect gene targets, and pathotype categories are complicated by hybrid strains and isolation of pathotypes from asymptomatic individuals. Recent progress toward more efficient, sensitive, and multiplex DEC pathotype detection has been made using emerging PCR-based technologies. Genomics and gut microbiome detection methods continue to advance rapidly and are contributing to a better understanding of DEC pathotype diversity and functional potential. SUMMARY: DEC pathotype categorizations and detection methods are useful but imperfect. The implementation of molecular and sequence-based methods and well designed epidemiological studies will continue to advance understanding of DEC pathotypes. Additional emphasis is needed on sequencing DEC genomes from regions of the world where they cause the most disease and from the pathotypes that cause the greatest burden of disease globally.


Subject(s)
Diarrhea/microbiology , Escherichia coli Infections/diagnosis , Escherichia coli/genetics , Enteropathogenic Escherichia coli/genetics , Enteropathogenic Escherichia coli/isolation & purification , Enterotoxigenic Escherichia coli/genetics , Escherichia coli/classification , Escherichia coli/isolation & purification , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Gastrointestinal Microbiome/genetics , Genes, Bacterial , Genomics , Humans , Polymerase Chain Reaction , Virulence , Virulence Factors
7.
Front Public Health ; 7: 66, 2019.
Article in English | MEDLINE | ID: mdl-31139608

ABSTRACT

Vibrio parahaemolyticus is a ubiquitous and abundant member of native microbial assemblages in coastal waters and shellfish. Though V. parahaemolyticus is predominantly environmental, some strains have infected human hosts and caused outbreaks of seafood-related gastroenteritis. In order to understand differences among clinical and environmental V. parahaemolyticus strains, we used high quality DNA sequencing data to compare the genomes of V. parahaemolyticus isolates (n = 43) from a variety of geographic locations and clinical and environmental sample matrices. We used phylogenetic trees inferred from multilocus sequence typing (MLST) and whole-genome (WG) alignments, as well as a novel classification and genome clustering approach that relies on protein motif fingerprints (MFs), to assess relationships between V. parahaemolyticus strains and identify novel molecular targets associated with virulence. Differences in strain clustering at more than one position were observed between the MLST and WG phylogenetic trees. The WG phylogeny had higher support values and strain resolution since isolates of the same sequence type could be differentiated. The MF analysis revealed groups of protein motifs that were associated with the pathogenic MLST type ST36 and a large group of clinical strains isolated from human stool. A subset of the stool and ST36-associated protein motifs were selected for further analysis and the motif sequences were found in genes with a variety of functions, including transposases, secretion system components and effectors, and hypothetical proteins. DNA sequences associated with these protein motifs are candidate targets for future molecular assays in order to improve surveys of pathogenic V. parahaemolyticus in the environment and seafood.

8.
Appl Environ Microbiol ; 84(13)2018 07 01.
Article in English | MEDLINE | ID: mdl-29678912

ABSTRACT

Of marine eubacteria, the genus Vibrio is intriguing because member species are relevant to both marine ecology and human health. Many studies have touted the relationships of Vibrio to environmental factors, especially temperature and salinity, to predict total Vibrio abundance but lacked the taxonomic resolution to identify the relationships among species and the key drivers of Vibrio dynamics. To improve next-generation sequencing (NGS) surveys of Vibrio, we have conducted both 16S small subunit rRNA and heat shock protein 60 (hsp60) amplicon sequencing of water samples collected at two well-studied locations in the Neuse River Estuary, NC. Samples were collected between May and December 2016 with enhanced sampling efforts in response to two named storms. Using hsp60 sequences, 21 Vibrio species were identified, including the potential human pathogens V. cholerae, V. parahaemolyticus, and V. vulnificus Changes in the Vibrio community mirrored seasonal and storm-related changes in the water column, especially in response to an influx of nutrient-rich freshwater to the estuary after Hurricane Matthew, which initiated dramatic changes in the overall Vibrio community. Individual species dynamics were wide ranging, indicating that individual Vibrio taxa have unique ecologies and that total Vibrio abundance predictors are insufficient for risk assessments of potentially pathogenic species. Positive relationships between Vibrio, dinoflagellates, and Cyanobacteria were identified, as were intraspecies associations, which further illuminated the interactions of cooccurring Vibrio taxa along environmental gradients.IMPORTANCE The objectives of this research were to utilize a novel approach to improve sequence-based surveys of Vibrio communities and to demonstrate the usefulness of this approach by presenting an analysis of Vibrio dynamics in the context of environmental conditions, with a particular focus on species that cause disease in humans and on storm effects. The methods presented here enabled the analysis of Vibrio dynamics with excellent taxonomic resolution and could be incorporated into future ecological studies and risk prediction strategies for potentially pathogenic species. Next-generation sequencing of hsp60 and other innovative sequence-based approaches are valuable tools and show great promise for studying Vibrio ecology and associated public health risks.


Subject(s)
Chaperonin 60/genetics , Ecology , High-Throughput Nucleotide Sequencing/methods , Rivers/microbiology , Vibrio/genetics , Vibrio/physiology , Environmental Microbiology , Fresh Water , Humans , Indans , North Carolina , Public Health , RNA, Ribosomal, 16S/genetics , Salinity , Seasons , Temperature , Vibrio/growth & development , Vibrio cholerae/genetics , Vibrio parahaemolyticus/genetics , Vibrio vulnificus/genetics , Water Microbiology
9.
Appl Environ Microbiol ; 81(9): 2976-84, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25681182

ABSTRACT

The chemolithotrophic Zetaproteobacteria represent a novel class of Proteobacteria which oxidize Fe(II) to Fe(III) and are the dominant bacterial population in iron-rich microbial mats. Zetaproteobacteria were first discovered at Lo'ihi Seamount, located 35 km southeast off the big island of Hawai'i, which is characterized by low-temperature diffuse hydrothermal venting. Novel nondegenerate quantitative PCR (qPCR) assays for genes associated with microbial nitrogen fixation, denitrification, arsenic detoxification, Calvin-Benson-Bassham (CBB), and reductive tricarboxylic acid (rTCA) cycles were developed using selected microbial mat community-derived metagenomes. Nitrogen fixation genes were not detected, but all other functional genes were present. This suggests that arsenic detoxification and denitrification processes are likely cooccurring in addition to two modes of carbon fixation. Two groups of microbial mat community types were identified by terminal restriction fragment length polymorphism (T-RFLP) and were further described based on qPCR data for zetaproteobacterial abundance and carbon fixation mode preference. qPCR variance was associated with mat morphology but not with temperature or sample site. Geochemistry data were significantly associated with sample site and mat morphology. Together, these qPCR assays constitute a functional gene signature for iron microbial mat communities across a broad array of temperatures, mat types, chemistries, and sampling sites at Lo'ihi Seamount.


Subject(s)
Gene Expression Profiling , Hydrothermal Vents/microbiology , Metabolic Networks and Pathways/genetics , Proteobacteria/genetics , Carbon/metabolism , DNA, Bacterial/genetics , Polymorphism, Restriction Fragment Length , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...