Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-476031

ABSTRACT

The newly emerging SARS-CoV-2 Omicron (B.1.1.529) variant first identified in South Africa in November 2021 is characterized by an unusual number of amino acid mutations in its spike that renders existing vaccines and therapeutic monoclonal antibodies dramatically less effective. The in vivo pathogenicity, transmissibility, and fitness of this new Variant of Concerns are unknown. We investigated these virological attributes of the Omicron variant in comparison with those of the currently dominant Delta (B.1.617.2) variant in the golden Syrian hamster COVID-19 model. Omicron-infected hamsters developed significantly less body weight losses, clinical scores, respiratory tract viral burdens, cytokine/chemokine dysregulation, and tissue damages than Delta-infected hamsters. The Omicron and Delta variant were both highly transmissible (100% vs 100%) via contact transmission. Importantly, the Omicron variant consistently demonstrated about 10-20% higher transmissibility than the already-highly transmissible Delta variant in repeated non-contact transmission studies (overall: 30/36 vs 24/36, 83.3% vs 66.7%). The Delta variant displayed higher fitness advantage than the Omicron variant without selection pressure in both in vitro and in vivo competition models. However, this scenario drastically changed once immune selection pressure with neutralizing antibodies active against the Delta variant but poorly active against the Omicron variant were introduced, with the Omicron variant significantly outcompeting the Delta variant. Taken together, our findings demonstrated that while the Omicron variant is less pathogenic than the Delta variant, it is highly transmissible and can outcompete the Delta variant under immune selection pressure. Next-generation vaccines and antivirals effective against this new VOC are urgently needed. One Sentence SummaryThe novel SARS-CoV-2 Omicron variant, though less pathogenic, is highly transmissible and outcompetes the Delta variant under immune selection pressure in the golden Syrian hamster COVID-19 model.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-475037

ABSTRACT

The strikingly high transmissibility and antibody evasion of SARS-CoV-2 Omicron variant have posted great challenges on the efficacy of current vaccines and antibody immunotherapy.Here, we screened 34 BNT162b2-vaccinees and cloned a public broadly neutralizing antibody (bNAb) ZCB11 from an elite vaccinee. ZCB11 neutralized all authentic SARS-CoV-2 variants of concern (VOCs), including Omicron and OmicronR346K with potent IC50 concentrations of 36.8 and 11.7 ng/mL, respectively. Functional analysis demonstrated that ZCB11 targeted viral receptor-binding domain (RBD) and competed strongly with ZB8, a known RBD-specific class II NAb. Pseudovirus-based mapping of 57 naturally occurred single mutations or deletions revealed that only S371L resulted in 11-fold neutralization resistance, but this phenotype was not observed in the Omicron variant. Furthermore,prophylactic ZCB11 administration protected lung infection against both the circulating pandemic Delta and Omicron variants in golden Syrian hamsters. These results demonstrated that vaccine-induced ZCB11 is a promising bNAb for immunotherapy against pandemic SARS-CoV-2 VOCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...