Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Res Lett ; 10: 67, 2015.
Article in English | MEDLINE | ID: mdl-25852364

ABSTRACT

Local droplet etching (LDE) utilizes metal droplets during molecular beam epitaxy for the self-assembled drilling of nanoholes into III/V semiconductor surfaces. An essential process during LDE is the removal of the deposited droplet material from its initial position during post-growth annealing. This paper studies the droplet material removal experimentally and discusses the results in terms of a simple model. The first set of experiments demonstrates that the droplet material is removed by detachment of atoms and spreading over the substrate surface. Further experiments establish that droplet etching requires a small arsenic background pressure to inhibit re-attachment of the detached atoms. Surfaces processed under completely minimized As pressure show no hole formation but instead a conservation of the initial droplets. Under consideration of these results, a simple kinetic scaling model of the etching process is proposed that quantitatively reproduces experimental data on the hole depth as a function of the process temperature and deposited amount of droplet material. Furthermore, the depth dependence of the hole side-facet angle is analyzed.

2.
Nanoscale Res Lett ; 9(1): 285, 2014.
Article in English | MEDLINE | ID: mdl-24948902

ABSTRACT

We describe a method to control the shape of nanoholes in GaAs (001) which combines the technique of local droplet etching using Ga droplets with long-time thermal annealing. The cone-like shape of inverted nanoholes formed by droplet etching is transformed during long-time annealing into widened holes with flat bottoms and reduced depth. This is qualitatively understood using a simplified model of mass transport incorporating surface diffusion and evaporation. The hole diameter can be thermally controlled by varying the annealing time or annealing temperature which provides a method for tuning template morphology for subsequent nanostructure nucleation. We also demonstrate the integration of the combined droplet/thermal etching process with heteroepitaxy by the thermal control of hole depth in AlGaAs layers.

3.
Langmuir ; 22(11): 5144-51, 2006 May 23.
Article in English | MEDLINE | ID: mdl-16700606

ABSTRACT

Organic-inorganic hybrid nanoparticles, derived from silica precursors with different organic functionalities (methyl, ethyl, vinyl, and phenyl) synthesized via a modified Stöber method have been investigated. These particles are intended as modifiers for polymers and polymer matrix composites. Therefore, the characteristics of a polyester matrix have also been determined, and the likely interactions with the particles have been proposed. Particles have been characterized using inverse gas chromatography (IGC), X-ray photoelectron spectroscopy (XPS), and infrared spectroscopy (FT-IR). The particles show two different sets of characteristics, with methyl, ethyl, and vinyl modified silicas showing one type of behavior and the phenyl modified silica behaving rather differently. The methyl, ethyl, and vinyl groups exhibit the appearance of uniform coverage, as they are comparatively small and tightly packed, which will prevent interaction of matrix resin with retained silanol groups. The phenyl group, which is comparatively large, is not able to pack as closely, which results in a reduction of the presence and availability of silanol groups, compared to an unmodified fumed silica, but not complete inaccessibility as far as the matrix resin is concerned.


Subject(s)
Inorganic Chemicals/chemistry , Nanoparticles/chemistry , Organic Chemicals/chemistry , Polyesters/chemistry , Acids/chemistry , Chromatography, Gas , Hydrogen-Ion Concentration , Spectrum Analysis , Surface Properties , Temperature , X-Rays
4.
Phys Rev Lett ; 97(25): 255502, 2006 Dec 22.
Article in English | MEDLINE | ID: mdl-17280365

ABSTRACT

We present a methodology for the investigation of dislocation energetics in segregated alloys based on Monte Carlo simulations which equilibrate the topology and composition of the dislocation core and its surroundings. An environment-dependent partitioning of the system total energy into atomic contributions allows us to link the atomistic picture to continuum elasticity theory. The method is applied to extract core energies and radii of 60 degrees glide dislocations in segregated SiGe alloys which are inaccessible by other methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...