Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38808617

ABSTRACT

Despite clinical advances with protein kinase inhibitors (PKIs), oral administration of many PKIs is associated with highly variable plasma exposure and a narrow therapeutic window. We developed a novel hybrid nanoparticle-amorphous solid dispersion (ASD) technology platform consisting of an amorphous PKI embedded in a polymer matrix. The technology was used to manufacture immediate-release formulations of 2 tyrosine kinase inhibitors (TKIs), dasatinib and sorafenib. Our primary objective was to improve the absorption properties and reduce the pharmacokinetic (PK) variability of each TKI. The PKs of XS004 (dasatinib-ASD, 100 mg tablet) and XS005 (sorafenib-ASD, 2 × 50 mg capsules) were compared with their crystalline formulated reference drugs (140 mg of dasatinib-reference and 200 mg of sorafenib-reference). The in vitro biopharmaceutics of dasatinib-ASD and XS005-granulate showed sustained increased solubility in the pH range 1.2-8.0 compared to their crystalline references. In vivo, XS004 was bioequivalent at a 30% lower dose and showed increased absorption and bioavailability, with 2.1-4.8 times lower intra- and intersubject variability compared to the reference. XS005 had an increased absorption and bioavailability of 45% and 2.2-2.8 times lower variability, respectively, but it was not bioequivalent at the investigated dose level. Taken together, the formulation platform is suited to generate improved PKI formulations with consistent bioavailability and a reduced pH-dependent absorption process.

2.
Eur J Haematol ; 111(4): 644-654, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37503797

ABSTRACT

BACKGROUND: Dasatinib and other tyrosine kinase inhibitors (TKI) have revolutionized the treatment of chronic myeloid leukemia (CML). However, as a lipophilic weak base, crystalline monohydrate, dasatinib (Sprycel®) is poorly soluble, rendering a pH-dependent absorption and a highly variable bioavailability. Thus, co-medication with proton pump inhibitors (PPI) profoundly impairs dasatinib uptake and is clearly recommended against. XS004 is a novel oral immediate release and amorphous solid dispersion (ASD) formulation of dasatinib and is bioequivalent to the original crystalline dasatinib at 30% lower dosages. XS004 is designed to mitigate gastric pH dependency, thus optimizing absorption and bioavailability. METHODS: We investigated the prevalence of dasatinib and PPI co-medication among chronic-phase CML patients in a real-world setting and assessed the plasma pharmacokinetics (PK) of XS004 with and without PPI co-medication (omeprazole) in healthy volunteers. RESULTS: Using the Swedish CML and Prescribed Drug Registers, we identified 676 TKI-treated CML patients; 320 (47%) had been prescribed PPI at some point after CML diagnosis. Among dasatinib-treated patients, the 2-year cumulative PPI co-medication was 24%. Interestingly, the 5-year overall survival was significantly lower for TKI-treated CML patients with versus without PPI co-medication (79% vs. 94%; hazard ratio 3.5; 95% confidence interval, 2.1-5.3; p < .0001). When assessing PK of XS004, neither Cmax nor area under the plasma concentration curve levels in plasma were significantly altered by the PPI co-medication. CONCLUSION: In conclusion, despite warnings, PPI co-medication is common among dasatinib-treated CML patients in a real-world setting. The new XS004 ASD formulation of dasatinib provided, in contrast to original crystalline dasatinib, superior pH independence with stable bioavailability, thereby minimizing drug-drug interactions. This may improve the long-term efficacy and tolerability of dasatinib in CML.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Proton Pump Inhibitors , Humans , Dasatinib/adverse effects , Proton Pump Inhibitors/adverse effects , Protein Kinase Inhibitors/adverse effects , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/epidemiology , Drug Interactions , Hydrogen-Ion Concentration
3.
Pharm Res ; 31(3): 694-705, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23990314

ABSTRACT

PURPOSE: A versatile methodology is demonstrated for improving dissolution kinetics, gastrointestinal (GI) absorption, and bioavailability of protein kinase inhibitors (PKIs). METHODS: The approach is based on nanoparticle precipitation by sub- or supercritical CO2 together with a matrix-forming polymer, incorporating surfactants either during or after nanoparticle formation. Notably, striking synergistic effects between hybrid PKI/polymer nanoparticles and surfactant added after particle formation is investigated. RESULTS: The hybrid nanoparticles, consisting of amorphous PKI embedded in a polymer matrix (also after 12 months), display dramatically increased release rate of nilotinib in both simulated gastric fluid and simulated intestinal fluid, particularly when surfactants are present on the hybrid nanoparticle surface. Similar results indicated flexibility of the approach regarding polymer identity, drug load, and choice of surfactant. The translation of the increased dissolution rate found in vitro into improved GI absorption and bioavalilability in vivo was demonstrated for male beagle dogs, where a 730% increase in the AUC0-24h was observed compared to the benchmark formulation. Finally, the generality of the formulation approach taken was demonstrated for a range of PKIs. CONCLUSIONS: Hybrid nanoparticles combined with surfactant represent a promising approach for improving PKI dissolution rate, providing increased GI absorption and bioavailability following oral administration.


Subject(s)
Carbon Dioxide/chemistry , Drug Carriers/chemistry , Nanoparticles/chemistry , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacokinetics , Administration, Oral , Animals , Dogs , Intestinal Absorption , Male , Nanoparticles/ultrastructure , Polymers/chemistry , Solubility , Surface-Active Agents/chemistry
4.
Anal Chem ; 79(11): 4022-30, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17472339

ABSTRACT

A parallel nanoliter microfluidic analysis system based on capillary action, centrifugal force, and hydrophobic barriers is described. The precision of 112 parallel volume definition operations is determined to 0.75% CV at 200 nL using the individual sample introduction structure. For 20 nL, the actual measurement error is the dominating factor, with a combined error of 1.9% CV. Individual dispensing as well as dispensing through a common distribution channel is described. The volume definition precision for the common distribution channel is 1.6% CV for 200 nL. Unlike the dominating forces in microliter-sized channel systems, we describe hysteresis effects as exerting a major influence, which needs to be considered in order to control the operation and design of discrete nanoliter fluidics. Hydrophobic patches at the corners of the rectangular channel control corner-enhanced wicking. Excellent flow control of 1 and 2 nL/s is achieved using a predefined spin program.

SELECTION OF CITATIONS
SEARCH DETAIL
...