Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 346: 140574, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37926164

ABSTRACT

Water splitting provides an environmental-friendly and sustainable approach for generating hydrogen fuel. The inherent energetic barrier in two-core half reactions such as the Hydrogen Evolution Reaction (HER) and Oxygen Evolution Reaction (OER) leads to undesired increased overpotential and constrained reaction kinetics. These challenges pose significant challenges that demand innovative solutions to overcome. One of the efficient ways to address this issue is tailoring the morphology and crystal structure of metal-organic frameworks (MOF). Nickel Zeolite Imidazolate Framework (Ni-ZIF) is a popular MOF and it can be tailored using facile chemical methods to unleash a remarkable bifunctional electro/photo catalyst. This innovative solution holds the capability to address prevailing obstacles such as inadequate electrical conductivity and limited access to active metal centers due to the influence of organic ligands. Thereby, applying boronization to the Ni-ZIF under different duration, one can induce blooming of nanobuds under room temperature and modify oxygen vacancies in order to achieve higher reaction kinetics in electro/photo catalysis. It can be evidenced by the 24-h boronized Ni-ZIF (BNZ), exhibiting lower overpotentials as electrocatalyst (OER-396 mV & HER-174 mV @ 20 mA/cm2) in 1 M KOH electrolyte and augmented gas evolution rates when employed as a photocatalyst (Hydrogen-14.37 µmol g-1min-1 & Oxygen-7.40 µmol g-1min-1). The 24-h boronization is identified as the optimum stage of crystalline to amorphous transformation which provided crystalline/amorphous boundaries as portrayed by X-Ray diffraction (XRD) and High Resolution-Transmission Electron Microscopy (HR-TEM) analysis. The flower-like transformation of 24-BNZ, characterized by crystalline-amorphous boundaries initiates with partial disruption of Ni-N bonds and formation of Ni-B bonds as evident from X-ray Photoelectron Spectroscopy (XPS). Further, the 24-h BNZ exhibit bifunctional catalytic activities with pre-longed stability. Overall, this work presents a comprehensive study of the electrocatalytic and photocatalytic water splitting properties of the tailored Ni-ZIF material.


Subject(s)
Metal-Organic Frameworks , Zeolites , Nickel , Temperature , Catalysis , Hydrogen , Oxygen , Water
2.
RSC Adv ; 9(13): 7536-7542, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-35519952

ABSTRACT

Hydrogenated amorphous Si (a-Si:H) thin-film solar cells (TFSCs) generally contain p/n-type Si layers, which are fabricated using toxic gases. The substitution of these p/n-type layers with non-toxic materials while improving the device performance is a major challenge in the field of TFSCs. Herein, we report the fabrication of a-Si:H TFSCs with the n-type Si layer replaced with a self-assembled monolayer (3-aminopropyl) triethoxysilane (APTES). The X-ray photoelectron spectroscopy results showed that the amine groups from APTES attached with the hydroxyl groups (-OH) on the intrinsic Si (i-Si) surface to form a positive interfacial dipole towards i-Si. This interfacial dipole facilitated the decrease in electron extraction barrier by lowering the work function of the cathode. Consequently, the TFSC with APTES showed a higher fill factor (0.61) and power conversion efficiency (7.68%) than the reference device (without APTES). This performance enhancement of the TFSC with APTES can be attributed to its superior built-in potential and the reduction in the Schottky barrier of the cathode. In addition, the TFSCs with APTES showed lower leakage currents under dark conditions, and hence better charge separation and stability than the reference device. This indicates that APTES is a potential alternative to n-type Si layers, and hence can be used for the fabrication of non-toxic air-stable a-Si:H TFSCs with enhanced performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...