Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38139773

ABSTRACT

Leishmaniasis is a neglected tropical disease that affects millions of people around the world. Available therapy causes severe side effects, has unacceptable prices for some specific formulations, and the existence of drug-resistant parasites limits the use of the currently available arsenal of antiparasitic drugs. Therefore, natural products serve as one of the main sources to develop new and effective alternative drugs against leishmaniasis. In this sense, the present study evaluated the potential of the triterpene Lupeol (Lu) entrapped in nanostructured lipid carriers (NLCs) for the treatment of experimental visceral leishmaniasis. The therapeutic efficacy of Lu or Lu entrapped in NLC (Lu-NLC) was investigated in golden hamsters infected with Leishmania (Leishmania) infantum. Lu-NLC presented a mean particle size of 265.3 ± 4.6 nm, a polydispersity index of <0.25 and a zeta potential of -37.2 ± 0.84 mV; the efficacy of encapsulation was 84.04 ± 0.57%. Studies on hamsters showed that Lu-NLC (5 mg/kg) administered intraperitoneally for 10 consecutive days caused a reduction of 99.9% in the number of parasites in the spleen and liver compared to the untreated infected control. On the contrary, Lu-treated animals (5 mg/kg) had 94.4 and 90.2% less parasites in the spleen and liver, respectively, than the infected group. Additionally, a significant preservation of splenic and hepatic tissues was observed in animals treated with Lu-NLC or Lu. Furthermore, Lu-NLC-treated animals produced high levels of anti-Leishmania IgG2 isotype. These data indicate that NLC potentialized Lu efficacy in experimental visceral leishmaniasis. This work suggests that Lu and nanoformulations carrying this compound may be considered as an important tool to be included in the alternative therapy of leishmaniasis.

2.
Pharmaceuticals (Basel) ; 16(5)2023 May 07.
Article in English | MEDLINE | ID: mdl-37242490

ABSTRACT

Leishmaniasis is a neglected disease caused by protozoa of the genus Leishmania, which causes different clinical manifestations. Drugs currently used in the treatment such as pentavalent antimonial and amphotericin B cause severe side effects in patients, and parasite resistance has been reported. Thus, it is necessary and urgent to characterize new and effective alternative drugs to replace the current chemotherapy of leishmaniasis. In this regard, it has been experimentally demonstrated that quinoline derivatives present significative pharmacological and parasitic properties. Thus, the aim of this work was to demonstrate the leishmanicidal activity of 8-hydroxyquinoline (8-HQ) in vitro and in vivo. The leishmanicidal activity (in vitro) of 8-HQ was assayed on promastigote and intracellular amastigote forms of L. (L.) amazonensis, L. (L.) infantum chagasi, L. (V.) guyanensis L. (V.) naiffi, L. (V.) lainsoni, and L. (V.) shawi. Additionally, the levels of nitric oxide and hydrogen peroxide were analyzed. The therapeutic potential of 8-HQ was analyzed in BALB/c mice infected with a strain of L. (L.) amazonensis that causes anergic cutaneous diffuse leishmaniasis. In vitro data showed that at 24 and 72 h, 8-HQ eliminated promastigote and intracellular amastigote forms of all studied species and this effect may be potentialized by nitric oxide. Furthermore, 8-HQ was more selective than miltefosine. Infected animals treated with 8-HQ by the intralesional route dramatically reduced the number of tissue parasites in the skin, and it was associated with an increase in IFN-γ and decrease in IL-4, which correlated with a reduction in inflammatory reaction in the skin. These results strongly support the idea that 8-HQ is an alternative molecule that can be employed in the treatment of leishmaniasis, given its selectivity and multispectral action in parasites from the Leishmania genus.

3.
Exp Parasitol ; 239: 108315, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35780863

ABSTRACT

Visceral leishmaniasis is a neglected tropical disease caused by parasites belonging to the Leishmania genus that infect macrophages in different tissues such as the spleen, liver, lymph nodes, bone marrow, and intestine. Therefore, this study aimed to investigate the integrity of the intestinal tract and the nitrergic (NADPH-dp) and metabolically active (NADH-dp) myenteric neurons of the duodenum of golden hamsters infected with L. (L.) infantum. Therefore, thirty golden hamsters were divided into six groups (n = 5); three of them were infected with 2 × 107 promastigote forms of L. (L.) infantum by intraperitoneal route (Infected Group - IG) and three were inoculated with saline solution (control group - CG). After 30, 60 and 90 days post-infection (DPI) infected animals were euthanized and the liver, spleen and duodenum were collected to analyze tissue parasitism. The duodenum was processed using usual histological techniques to analyze the main changes that occurred during infection and histochemical techniques to phenotype myenteric neurons. Amastigote forms were observed in the spleen, liver, and duodenum during all experimental periods, and tissue parasitism in these organs increased significantly over time. At 30 DPI, reduction in muscle tunic, increase in the total intestinal wall and the number of goblet cells PAS+ was observed. At 60 DPI, an increase in intestinal crypts and intraepithelial lymphocytes was observed, and a reduction in intestinal villi was observed at 90 DPI, along with an increase in crypt size. Regarding neurons, an increase in the density of the NADPH-dp population was observed at 30 DPI, but at 60 and 90 DPI a significant reduction of this population was observed. In general, infection progression was observed to cause significant morphofunctional changes in the duodenum of infected hamsters.


Subject(s)
Leishmania infantum , Leishmaniasis, Visceral , Animals , Cricetinae , Duodenum/pathology , Leishmania infantum/physiology , Leishmaniasis, Visceral/parasitology , Mesocricetus , NADP , Neurons/pathology
4.
Front Pharmacol ; 12: 690432, 2021.
Article in English | MEDLINE | ID: mdl-34220515

ABSTRACT

Leishmaniasis is a neglected tropical disease that affects people living in tropical and subtropical areas of the world. There are few therapeutic options for treating this infectious disease, and available drugs induce severe side effects in patients. Different communities have limited access to hospital facilities, as well as classical treatment of leishmaniasis; therefore, they use local natural products as alternative medicines to treat this infectious disease. The present work performed a bibliographic survey worldwide to record plants used by traditional communities to treat leishmaniasis, as well as the uses and peculiarities associated with each plant, which can guide future studies regarding the characterization of new drugs to treat leishmaniasis. A bibliographic survey performed in the PubMed and Scopus databases retrieved 294 articles related to traditional knowledge, medicinal plants and leishmaniasis; however, only 20 were selected based on the traditional use of plants to treat leishmaniasis. Considering such studies, 378 quotes referring to 292 plants (216 species and 76 genera) that have been used to treat leishmaniasis were recorded, which could be grouped into 89 different families. A broad discussion has been presented regarding the most frequent families, including Fabaceae (27 quotes), Araceae (23), Solanaceae and Asteraceae (22 each). Among the available data in the 378 quotes, it was observed that the parts of the plants most frequently used in local medicine were leaves (42.3% of recipes), applied topically (74.6%) and fresh poultices (17.2%). The contribution of Latin America to studies enrolling ethnopharmacological indications to treat leishmaniasis was evident. Of the 292 plants registered, 79 were tested against Leishmania sp. Future studies on leishmanicidal activity could be guided by the 292 plants presented in this study, mainly the five species Carica papaya L. (Caricaceae), Cedrela odorata L. (Meliaceae), Copaifera paupera (Herzog) Dwyer (Fabaceae), Musa × paradisiaca L. (Musaceae), and Nicotiana tabacum L. (Solanaceae), since they are the most frequently cited in articles and by traditional communities.

5.
Pharmaceutics ; 13(6)2021 Jun 19.
Article in English | MEDLINE | ID: mdl-34205283

ABSTRACT

Ursolic acid, a triterpene produced by plants, displayed leishmanicidal activity in vitro and in vivo; however, the low solubility of this triterpene limits its efficacy. To increase the activity of ursolic acid (UA), this triterpene was entrapped in nanostructured lipid carriers (UA-NLC), physical-chemical parameters were estimated, the toxicity was assayed in healthy golden hamsters, and the efficacy of UA-NLC was studied in experimental visceral leishmanisis. UA-NLC exhibited a spherical shape with a smooth surface with a size of 266 nm. UA-NLC displayed low polydispersity (PDI = 0.18) and good colloidal stability (-29.26 mV). Hamsters treated with UA-NLC did not present morphological changes in visceral organs, and the levels of AST, ALT, urea and creatinine were normal. Animals infected with Leishmania (Leishmania) infantum and treated with UA-NLC showed lower parasitism than the infected controls, animals treated with UA or Amphotericin B (AmB). The therapeutic activity of UA-NLC was associated with the increase in a protective immune response, and it was associated with a high degree of spleen and liver preservation, and the normalization of hepatic and renal functions. These data indicate that the use of lipid nanoparticles as UA carriers can be an interesting strategy for the treatment of leishmaniasis.

6.
J Immunol Res ; 2021: 6671287, 2021.
Article in English | MEDLINE | ID: mdl-33681389

ABSTRACT

Leishmaniasis is a neglected tropical disease caused by the flagellated protozoa of the genus Leishmania that affects millions of people around the world. Drugs employed in the treatment of leishmaniasis have limited efficacy and induce local and systemic side effects to the patients. Natural products are an interesting alternative to treat leishmaniasis, because some purified molecules are selective toward parasites and not to the host cells. Thus, the aim of the present study was to compare the in vitro antileishmanial activity of the triterpenes betulin (Be), lupeol (Lu), and ursolic acid (UA); analyze the physiology and morphology of affected organelles; analyze the toxicity of selected triterpenes in golden hamsters; and study the therapeutic activity of triterpenes in hamsters infected with L. (L.) infantum as well as the cellular immunity induced by studied molecules. The triterpenes Lu and UA were active on promastigote (IC50 = 4.0 ± 0.3 and 8.0 ± 0.2 µM, respectively) and amastigote forms (IC50 = 17.5 ± 0.4 and 3.0 ± 0.2 µM, respectively) of L. (L.) infantum, and their selectivity indexes (SI) toward amastigote forms were higher (≥13.4 and 14, respectively) than SI of miltefosine (2.7). L. (L.) infantum promastigotes treated with Lu and UA showed cytoplasmic degradation, and in some of these areas, cell debris were identified, resembling autophagic vacuoles, and parasite mitochondria were swelled, fragmented, and displayed membrane potential altered over time. Parasite cell membrane was not affected by studied triterpenes. Studies of toxicity in golden hamster showed that Lu did not alter blood biochemical parameters associated with liver and kidney functions; however, a slight increase of aspartate aminotransferase level in animals treated with 2.5 mg/kg of UA was detected. Lu and UA triterpenes eliminated amastigote forms in the spleen (87.5 and 95.9% of reduction, respectively) and liver of infected hamster (95.9 and 99.7% of reduction, respectively); and UA showed similar activity at eliminating amastigote forms in the spleen and liver than amphotericin B (99.2 and 99.8% of reduction). The therapeutic activity of both triterpenes was associated with the elevation of IFN-γ and/or iNOS expression in infected treated animals. This is the first comparative work showing the in vitro activity, toxicity, and therapeutic activity of Lu and UA in the chronic model of visceral leishmaniasis caused by L. (L.) infantum; additionally, both triterpenes activated cellular immune response in the hamster model of visceral leishmaniasis.


Subject(s)
Antiprotozoal Agents/pharmacology , Leishmania donovani/drug effects , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Pentacyclic Triterpenes/pharmacology , Animals , Antiprotozoal Agents/chemistry , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/pharmacology , Immunomodulation/drug effects , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/metabolism , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondria/drug effects , Mitochondria/immunology , Mitochondria/metabolism , Molecular Structure , Pentacyclic Triterpenes/chemistry
7.
Pathogens ; 9(10)2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33092305

ABSTRACT

Ursolic acid (UA) is a triterpene with a broad array of pharmacological activities. In leishmaniasis, UA killed different species of parasites, and it was active in the experimental model of cutaneous and visceral leishmaniasis. Thus, the objective of this work was to study the therapeutic efficacy of the conventional drugs amphotericin B (AmB) or glucantime (Glu) combined with UA in experimental visceral and cutaneous leishmaniasis, respectively. L. (L.) infantum-infected hamsters were treated with AmB alone or combined with UA. L. (L.) amazonensis-infected BALB/c mice were treated with Glu alone or combined with UA. Animals were treated for 15 consecutive days by intraperitoneal or intralesional routes. Following one week after the last dose, the tissue parasitism and cellular immune responses were analyzed. Hamsters treated with 0.2 and 1.0 mg/kg of AmB plus 1.0 mg/kg of UA showed low hepatic and splenic parasitisms; however, AmB given as monotherapy did not reduce the number of viable parasites in the spleen of treated animals. In cutaneous leishmaniasis, Glu given as monotherapy was inactive at 2.0 mg/kg, showed mild activity at 10.0 mg/kg, and at 50.0 mg/kg was highly active at eliminating parasites in the skin. When animals were treated with Glu plus UA, higher leishmanicidal activity was observed in comparison to all groups treated with monotherapy schemes, and such activity was related to lesion improvement and upregulation of IFN-γ production. Altogether, data suggest that the association of drugs for the treatment of leishmaniasis can increase the efficiency of the treatment and decrease the toxicity associated to the conventional drugs.

8.
Bioorg Chem ; 102: 104056, 2020 09.
Article in English | MEDLINE | ID: mdl-32653607

ABSTRACT

Leishmaniasis is an infectious disease caused by protozoan parasites of the genus Leishmania. The treatment of all forms of leishmaniasis relies on first-line drug, pentavalent antimonial, and in cases of drug failure, the second-line drug amphotericin B has been used. Besides the high toxicity of drugs, parasites can be resistant to antimonial in some areas of the World, making it necessary to perform further studies for the characterization of new antileishmanial agents. Thus, the aim of the present work was to evaluate the leishmanicidal activity of tolnaftate, a selective reversible and non-competitive inhibitor of the fungal enzyme squalene epoxidase, which is involved in the biosynthesis of ergosterol, essential to maintain membrane physiology in fungi as well as trypanosomatids. Tolnaftate eliminated promastigote forms of L. (L.) amazonensis, L. (V.) braziliensis and L. (L.) infantum (EC50 ~ 10 µg/mL and SI ~ 20 for all leishmanial species), and intracellular amastigote forms of all studied species (EC50 ~ 23 µg/mL in infections caused by dermatotropic species; and 11.7 µg/mL in infection caused by viscerotropic species) with high selectivity toward parasites [SI ~ 8 in infections caused by dermatotropic species and 17.4 for viscerotropic specie]. Promastigote forms of L. (L.) amazonensis treated with the EC50 of tolnaftate displayed morphological and physiological changes in the mitochondria and cell membrane. Additionally, promastigote forms treated with tolnaftate EC50 reduced the level of ergosterol by 5.6 times in comparison to the control parasites. Altogether, these results suggest that tolnaftate has leishmanicidal activity towards Leishmania sp., is selective, affects the cell membrane and mitochondria of parasites and, moreover, inhibits ergosterol production in L. (L.) amazonensis.


Subject(s)
Antifungal Agents/therapeutic use , Antiprotozoal Agents/therapeutic use , Ergosterol/antagonists & inhibitors , Leishmania/drug effects , Leishmaniasis/drug therapy , Tolnaftate/therapeutic use , Animals , Antifungal Agents/pharmacology , Antiprotozoal Agents/pharmacology , Cell Survival , Humans , Mice , Tolnaftate/pharmacology
9.
Curr Top Med Chem ; 18(27): 2338-2346, 2018.
Article in English | MEDLINE | ID: mdl-30569856

ABSTRACT

Leishmaniasis is an infectious disease caused by protozoal parasites belonging to Leishmania genus. Different clinical outcomes can be observed depending on the parasite species and health condition of patients. It can range from single cutaneous lesion until deadly visceral form. The treatment of all forms of leishmaniasis is based on pentavalent antimonials, and in some cases, the second-line drug, amphotericin B is used. Beside the toxicity of both drugs, parasites can be resistant to antimonial in some areas of the world. This makes fundamental the characterization of new drugs with leishmanicidal effect. Thus, the aim of the present work was to study the leishmanicidal activity of drugs able to interfere with ergosterol pathway (fenticonazole, tioconazole, nystatin, rosuvastatin and voriconazole) against promastigote and amastigote forms of L.(L.) amazonensis, L.(V.) braziliensis and L.(L.) infantum, and its impact on morphological and physiological changes in L.(L.) amazonensis or in host macrophages. We observed that fenticonazole, tioconazole and nystatin drugs eliminated promastigote and intracellular amastigotes, being fenticonazole and nystatin the most selective towards amastigote forms. Rosuvastatin and voriconazole did not present activity against amastigote forms of Leishmania sp. In addition, the drugs with leishmanicidal activity interfered with parasite mitochondrion. Although drugs did not stimulate NO and H2O2, specially fenticonazole was able to alkalize infected host macrophages. These results suggest well established and non-toxic antifungal drugs can be repurposed and used in leishmaniasis.


Subject(s)
Antiprotozoal Agents/pharmacology , Imidazoles/pharmacology , Leishmania/drug effects , Nystatin/pharmacology , Antiprotozoal Agents/chemistry , Imidazoles/chemistry , Nystatin/chemistry , Parasitic Sensitivity Tests , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...