Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Braz Oral Res ; 38: e064, 2024.
Article in English | MEDLINE | ID: mdl-39016370

ABSTRACT

The aim of this study was to evaluate the influence of implant macrodesign and surface hydrophilicity on osteoclast (OC) differentiation, activation, and survival in vitro. Titanium disks were produced with a sandblasted, dual acid-etched surface, with or without additional chemical modification for increasing hydrophilicity (SAE-HD and SAE, respectively) and different macrodesign comprising trapezoidal (HLX) or triangular threads (TMX). This study evaluated 7 groups in total, 4 of which were experimental: HLX/SAE-HD, HLX-SAE, TMX/SAE-HD, and TMX/SAE; and 3 control groups comprising OC differentiated on polystyrene plates (CCPC): a positive CCPC (+), a negative CCPC (-), and a lipopolysaccharide-stimulated assay positive control group, CCPC-LPS. Murine macrophage RAW264.7 cells were seeded on the disks, differentiated to OC (RAW-OC) by receptor activator of nuclear factor-κB ligand (RANKL) treatment and cultured for 5 days. Osteoclast differentiation and cell viability were respectively assessed by specific enzymatic Tartrate-Resistant Acid Phosphatase (TRAP) activity and MTT assays. Expression levels of various OC-related genes were measured at the mRNA level by quantitative polymerase chain reaction (qPCR). HLX/SAE-HD, TMX/SAE-HD, and HLX/SAE significantly suppressed OC differentiation when compared to CCPC (+). Cell viability was significantly increased in TMX/SAE and reduced in HLX/SAE-HD. In addition, the expression of Interleukin (IL)-6 and Tumour Necrosis Factor (TNF)-α was upregulated in TMX/SAE-HD compared to CCPC (+). Hydrophilic surfaces negatively modulate macrophage/osteoclast viability. Specifically, SAE-HD with double triangular threads increases the cellular pro-inflammatory status, while surface hydrophilicity and macrodesign do not seem to have a distinct impact on osteoclast differentiation, activation, or survival.


Subject(s)
Cell Differentiation , Cell Survival , Hydrophobic and Hydrophilic Interactions , Osteoclasts , Surface Properties , Titanium , Titanium/chemistry , Osteoclasts/drug effects , Cell Differentiation/drug effects , Animals , Cell Survival/drug effects , Mice , Time Factors , Acid Etching, Dental , Osteogenesis/drug effects , Osteogenesis/physiology , Materials Testing , Reproducibility of Results , Tartrate-Resistant Acid Phosphatase/analysis , Analysis of Variance , RANK Ligand/analysis , Real-Time Polymerase Chain Reaction , RAW 264.7 Cells , Reference Values , Macrophages/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...