Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 10(10): 685, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31527584

ABSTRACT

Protein kinase C (PKC)-interacting cousin of thioredoxin (PICOT; also termed glutaredoxin 3 (Grx3; Glrx3)) is a ubiquitous protein that can interact with the embryonic ectoderm development (EED) protein via each of its two C-terminal PICOT/Grx homology domains. Since EED is a Polycomb-Group protein and a core component of the polycomb repressive complex 2 (PRC2), we tested the involvement of PICOT in the regulation of PRC2-mediated H3 lysine 27 trimethylation (H3K27me3), transcription and translation of selected PRC2 target genes. A fraction of the cellular PICOT protein was found in the nuclei of leukemia cell lines, where it was associated with the chromatin. In addition, PICOT coimmunoprecipitated with chromatin-residing EED derived from Jurkat and COS-7 cell nuclei. PICOT knockdown led to a reduced H3K27me3 mark and a decrease in EED and EZH2 at the CCND2 gene promoter. In agreement, PICOT-deficient T cells exhibited a significant increase in CCND2 mRNA and protein expression. Since elevated expression levels of PICOT were reported in several different tumors and correlated in the current studies with decreased transcription and translation of the CCND2 gene, we tested whether this opposite correlation exists in human cancers. Data from the Cancer Genome Atlas (TCGA) database indicated statistically significant negative correlation between PICOT and CCND2 in eight different human tumors where the highest correlation was in lung (p = 8.67E-10) and pancreatic (p = 1.06E-5) adenocarcinoma. Furthermore, high expression of PICOT and low expression of CCND2 correlated with poor patient survival in five different types of human tumors. The results suggest that PICOT binding to chromatin-associated EED modulates the H3K27me3 level at the CCND2 gene promoter which may be one of the potential mechanisms for regulation of cyclin D2 expression in tumors. These findings also indicate that a low PICOT/CCND2 expression ratio might serve as a good predictor of patient survival in selected human cancers.


Subject(s)
Carrier Proteins/metabolism , Connective Tissue Growth Factor/genetics , Cyclin D2/biosynthesis , Histones/metabolism , Polycomb Repressive Complex 2/metabolism , A549 Cells , Animals , COS Cells , Carrier Proteins/genetics , Cell Line, Tumor , Chlorocebus aethiops , Chromatin/metabolism , Connective Tissue Growth Factor/metabolism , Cyclin D2/genetics , HEK293 Cells , Histones/genetics , Humans , Jurkat Cells , K562 Cells , Polycomb Repressive Complex 2/genetics , Promoter Regions, Genetic , THP-1 Cells , U937 Cells
2.
Physiol Mol Biol Plants ; 24(2): 315-324, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29515325

ABSTRACT

Cyanobacteria are one of the ancient bacterial species occupying a variety of habitats with diverse metabolic preferences. RNA regulators like riboswitches play significant role in controlling the gene expression in prokaryotes. The taxonomic distribution of riboswitches suggests that they might be one of the oldest mechanisms of gene control system. In this paper, we analyzed the distribution of different riboswitch families in various cyanobacterial genomes. It was observed that only four riboswitch classes were abundant in cyanobacteria, B12-element (Cob)/AdoCbl/AdoCbl-variant riboswitch being the most abundant. The analysis suggests that riboswitch mode of regulation is present in cyanobacterial species irrespective of their habitat types. A large number of unidentified genes regulated by riboswitches listed in this analysis indicate the wide range of targets for these riboswitch families. The analysis revealed a large number of genes regulated by riboswitches which may assist in elaborating the diversity among the cyanobacterial species.

3.
Front Plant Sci ; 7: 304, 2016.
Article in English | MEDLINE | ID: mdl-27014324

ABSTRACT

During evolution, various processes such as duplication, divergence, recombination, and many other events leads to the evolution of new genes with novel functions. These evolutionary events, thus significantly impact the evolution of cellular, physiological, morphological, and other phenotypic trait of organisms. While evolving, eukaryotes have acquired large number of genes from the earlier prokaryotes. This work is focused upon identification of old "prokaryotic" proteins in Arabidopsis and Oryza sativa genome, further highlighting their possible role(s) in the two genomes. Our results suggest that with respect to their genome size, the fraction of old "prokaryotic" proteins is higher in Arabidopsis than in Oryza sativa. The large fractions of such proteins encoding genes were found to be localized in various endo-symbiotic organelles. The domain architecture of the old "prokaryotic" proteins revealed similar distribution in both Arabidopsis and Oryza sativa genomes showing their conserved evolution. In Oryza sativa, the old "prokaryotic" proteins were more involved in developmental processes, might be due to constant man-made selection pressure for better agronomic traits/productivity. While in Arabidopsis, these proteins were involved in metabolic functions. Overall, the analysis indicates the distinct pattern of evolution of old "prokaryotic" proteins in Arabidopsis and Oryza sativa.

SELECTION OF CITATIONS
SEARCH DETAIL
...