Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(8): e0201516, 2018.
Article in English | MEDLINE | ID: mdl-30067853

ABSTRACT

Interactions with artificial agents often lack immediacy because agents respond slower than their users expect. Automatic speech recognisers introduce this delay by analysing a user's utterance only after it has been completed. Early, uncertain hypotheses of incremental speech recognisers can enable artificial agents to respond more timely. However, these hypotheses may change significantly with each update. Therefore, an already initiated action may turn into an error and invoke error cost. We investigated whether humans would use uncertain hypotheses for planning ahead and/or initiating their response. We designed a Ghost-in-the-Machine study in a bar scenario. A human participant controlled a bartending robot and perceived the scene only through its recognisers. The results showed that participants used uncertain hypotheses for selecting the best matching action. This is comparable to computing the utility of dialogue moves. Participants evaluated the available evidence and the error cost of their actions prior to initiating them. If the error cost was low, the participants initiated their response with only suggestive evidence. Otherwise, they waited for additional, more confident hypotheses if they still had time to do so. If there was time pressure but only little evidence, participants grounded their understanding with echo questions. These findings contribute to a psychologically plausible policy for human-robot interaction that enables artificial agents to respond more timely and socially appropriately under uncertainty.


Subject(s)
Robotics , Speech , Adult , Comprehension , Equipment Design , Female , Humans , Interpersonal Relations , Male , Robotics/instrumentation , Uncertainty , Young Adult
2.
Front Psychol ; 6: 1641, 2015.
Article in English | MEDLINE | ID: mdl-26582998

ABSTRACT

We used a new method called "Ghost-in-the-Machine" (GiM) to investigate social interactions with a robotic bartender taking orders for drinks and serving them. Using the GiM paradigm allowed us to identify how human participants recognize the intentions of customers on the basis of the output of the robotic recognizers. Specifically, we measured which recognizer modalities (e.g., speech, the distance to the bar) were relevant at different stages of the interaction. This provided insights into human social behavior necessary for the development of socially competent robots. When initiating the drink-order interaction, the most important recognizers were those based on computer vision. When drink orders were being placed, however, the most important information source was the speech recognition. Interestingly, the participants used only a subset of the available information, focussing only on a few relevant recognizers while ignoring others. This reduced the risk of acting on erroneous sensor data and enabled them to complete service interactions more swiftly than a robot using all available sensor data. We also investigated socially appropriate response strategies. In their responses, the participants preferred to use the same modality as the customer's requests, e.g., they tended to respond verbally to verbal requests. Also, they added redundancy to their responses, for instance by using echo questions. We argue that incorporating the social strategies discovered with the GiM paradigm in multimodal grammars of human-robot interactions improves the robustness and the ease-of-use of these interactions, and therefore provides a smoother user experience.

SELECTION OF CITATIONS
SEARCH DETAIL
...