Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 20180, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37978222

ABSTRACT

We generated single haplotype assemblies from a hinny hybrid which significantly improved the gapless contiguity for horse and donkey autosomal genomes and the X chromosomes. We added over 15 Mb of missing sequence to both X chromosomes, 60 Mb to donkey autosomes and corrected numerous errors in donkey and some in horse reference genomes. We resolved functionally important X-linked repeats: the DXZ4 macrosatellite and ampliconic Equine Testis Specific Transcript Y7 (ETSTY7). We pinpointed the location of the pseudoautosomal boundaries (PAB) and determined the size of the horse (1.8 Mb) and donkey (1.88 Mb) pseudoautosomal regions (PARs). We discovered distinct differences in horse and donkey PABs: a testis-expressed gene, XKR3Y, spans horse PAB with exons1-2 located in Y and exon3 in the X-Y PAR, whereas the donkey XKR3Y is Y-specific. DXZ4 had a similar ~ 8 kb monomer in both species with 10 copies in horse and 20 in donkey. We assigned hundreds of copies of ETSTY7, a sequence horizontally transferred from Parascaris and massively amplified in equids, to horse and donkey X chromosomes and three autosomes. The findings and products contribute to molecular studies of equid biology and advance research on X-linked conditions, sex chromosome regulation and evolution in equids.


Subject(s)
Equidae , X Chromosome , Male , Horses/genetics , Animals , Equidae/genetics , X Chromosome/genetics , Sex Chromosomes , Genome
2.
Genes (Basel) ; 12(1)2021 01 16.
Article in English | MEDLINE | ID: mdl-33467186

ABSTRACT

The unique evolutionary dynamics and complex structure make the Y chromosome the most diverse and least understood region in the mammalian genome, despite its undisputable role in sex determination, development, and male fertility. Here we present the first contig-level annotated draft assembly for the alpaca (Vicugna pacos) Y chromosome based on hybrid assembly of short- and long-read sequence data of flow-sorted Y. The latter was also used for cDNA selection providing Y-enriched testis transcriptome for annotation. The final assembly of 8.22 Mb comprised 4.5 Mb of male specific Y (MSY) and 3.7 Mb of the pseudoautosomal region. In MSY, we annotated 15 X-degenerate genes and two novel transcripts, but no transposed sequences. Two MSY genes, HSFY and RBMY, are multicopy. The pseudoautosomal boundary is located between SHROOM2 and HSFY. Comparative analysis shows that the small and cytogenetically distinct alpaca Y shares most of MSY sequences with the larger dromedary and Bactrian camel Y chromosomes. Most of alpaca X-degenerate genes are also shared with other mammalian MSYs, though WWC3Y is Y-specific only in alpaca/camels and the horse. The partial alpaca Y assembly is a starting point for further expansion and will have applications in the study of camelid populations and male biology.


Subject(s)
Camelids, New World/genetics , Y Chromosome/genetics , Animals , Male
3.
Cytogenet Genome Res ; 160(11-12): 688-697, 2020.
Article in English | MEDLINE | ID: mdl-33326979

ABSTRACT

We report 2 novel autosomal translocations in the horse. In Case 1, a breeding stallion with a balanced t(4p;30) had produced normal foals and those with congenital abnormalities. Of his 9 phenotypically normal offspring, 4 had normal karyotypes, 4 had balanced t(4p;30), and 1 carried an unbalanced translocation with tertiary trisomy of 4p. We argue that unbalanced forms of t(4p;30) are more tolerated and result in viable congenital abnormalities, without causing embryonic death like all other known equine autosomal translocations. In Case 2, two stallions produced by somatic cell nuclear transfer from the same donor were karyotyped because of fertility issues. A balanced translocation t(12q;25) was found in one, but not in the other clone. The findings underscore the importance of routine cytogenetic screening of breeding animals and animals produced by assisted reproductive technologies. These cases will contribute to molecular studies of translocation breakpoints and their genetic consequences in the horse.


Subject(s)
Chromosomes, Mammalian/genetics , Cloning, Organism , Horses/genetics , Translocation, Genetic , Abnormal Karyotype , Animals , Breeding , Congenital Abnormalities/genetics , Female , Genotype , Infertility/veterinary , Karyotyping , Male , Nuclear Transfer Techniques , Phenotype , Trisomy
4.
Genes (Basel) ; 11(3)2020 02 27.
Article in English | MEDLINE | ID: mdl-32120906

ABSTRACT

Disorders of sex development (DSD) and reproduction are not uncommon among horses, though knowledge about their molecular causes is sparse. Here we characterized a ~200 kb homozygous deletion in chromosome 29 at 29.7-29.9 Mb. The region contains AKR1C genes which function as ketosteroid reductases in steroid hormone biosynthesis, including androgens and estrogens. Mutations in AKR1C genes are associated with human DSDs. Deletion boundaries, sequence properties and gene content were studied by PCR and whole genome sequencing of select deletion homozygotes and control animals. Deletion analysis by PCR in 940 horses, including 622 with DSDs and reproductive problems and 318 phenotypically normal controls, detected 67 deletion homozygotes of which 79% were developmentally or reproductively abnormal. Altogether, 8-9% of all abnormal horses were homozygous for the deletion, with the highest incidence (9.4%) among cryptorchids. The deletion was found in ~4% of our phenotypically normal cohort, ~1% of global warmblood horses and ponies, and ~7% of draught breeds of general horse population as retrieved from published data. Based on the abnormal phenotype of the carriers, the functionally relevant gene content, and the low incidence in general population, we consider the deletion in chromosome 29 as a risk factor for equine DSDs and reproductive disorders.


Subject(s)
Disorders of Sex Development/genetics , Gonadal Steroid Hormones/biosynthesis , Horses/genetics , Reproduction/genetics , Animals , Breeding , Chromosomes/genetics , Disorders of Sex Development/pathology , Genotype , Gonadal Steroid Hormones/genetics , Homozygote , Polymorphism, Single Nucleotide/genetics , Reproduction/physiology , Risk Factors , Sequence Deletion/genetics , Sexual Development/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...